77 resultados para Discrete-continuous optimal control problems
Resumo:
The step size determines the accuracy of a discrete element simulation. The position and velocity updating calculation uses a pre-calculated table and hence the control of step size can not use the integration formulas for step size control. A step size control scheme for use with the table driven velocity and position calculation uses the difference between the calculation result from one big step and that from two small steps. This variable time step size method chooses the suitable time step size for each particle at each step automatically according to the conditions. Simulation using fixed time step method is compared with that of using variable time step method. The difference in computation time for the same accuracy using a variable step size (compared to the fixed step) depends on the particular problem. For a simple test case the times are roughly similar. However, the variable step size gives the required accuracy on the first run. A fixed step size may require several runs to check the simulation accuracy or a conservative step size that results in longer run times. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
We investigate difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations. We formulate conditions under which all solutions to the discrete problem satisfy certain a priori bounds which axe independent of the step-size. As a result, the nonexistence of spurious solutions are guaranteed. Some existence and convergence theorems for solutions to the discrete problem are also presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Error condition detected We consider discrete two-point boundary value problems of the form D-2 y(k+1) = f (kh, y(k), D y(k)), for k = 1,...,n - 1, (0,0) = G((y(0),y(n));(Dy-1,Dy-n)), where Dy-k = (y(k) - Yk-I)/h and h = 1/n. This arises as a finite difference approximation to y" = f(x,y,y'), x is an element of [0,1], (0,0) = G((y(0),y(1));(y'(0),y'(1))). We assume that f and G = (g(0), g(1)) are continuous and fully nonlinear, that there exist pairs of strict lower and strict upper solutions for the continuous problem, and that f and G satisfy additional assumptions that are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. Under these assumptions we show that there are at least three distinct solutions of the discrete approximation which approximate solutions to the continuous problem as the grid size, h, goes to 0. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.
Resumo:
Difference equations which may arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations are investigated and conditions are formulated under which solutions to the discrete problem are unique. Some existence, uniqueness implies existence, and convergence theorems for solutions to the discrete problem are also presented.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.
Resumo:
Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.