56 resultados para Diffusion and lntermittency
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.
Resumo:
In our study on sub-critical hydrocarbon permeation in activated carbon, a minimum in the total permeability (B-T) at low pressure has been observed for only long-chain hydrocarbons such as n-hexane and n-heptane. Such an observation suggests that the minimum appearance depends on the properties of permeating vapors as well as the porous medium. In this paper a permeation model is presented to explain the minimum behavior with the allowance of the collision-reflection factor in the Knudsen diffusivity to be a function of surface loading. Surface diffusion was found to be very significant compared to other transport mechanisms such as Knudsen diffusion and gaseous viscous flow at low pressures. Since the gaseous viscous flow contributes negligibly to the B, at low pressures, the minimum appearance in the B, is mainly attributed to the interplay between Knudsen diffusion and surface diffusion. Also, the molecular structure of adsorbates plays an important role in the minimum appearance.
Resumo:
A new diffusion and flow model is presented to describe the behavior of hydrocarbon vapors in activated carbon. The micro/mesopore size distribution (PSD) is obtained according to Do's method which consists of two sequential processes of pore layering and pore filling. This model uses the micro/meso PSD obtained from each adsorbate equilibrium isotherm, which reflects the dynamics behavior of adsorbing molecules through the solid. The initial rise in total permeability is mainly attributed to adsorbed-phase diffusion (that is, surface diffusion), whereas the decrease over reduced pressure of about 0.9 is attributed to the reduction of pore space available for gas phase diffusion and flow. A functional form of surface diffusivity is proposed and validated with experimental data. This model predicts well the permeability of condensable hydrocarbon vapors in activated carbon. (C) 2005 American Institute of Chemical Engineers.
Resumo:
Solid tumours display elevated resistance to chemo- and radiotherapies compared to individual tumour derived cells. This so-called multicellular resistance (MCR) phenomenon can only be partly explained by reduced diffusion and altered cell cycle status; even fast growing cells on the surface of solid tumours display MCR. Multicellular spheroids (MCS) recapture this phenomenon ex vivo and here we compare gene expression in exponentially growing MCS with gene expression in monolayer culture. Using an 18,664 gene microarray, we identified 42 differentially expressed genes and three of these genes can be linked to potential mechanisms of MCR. A group of interferon response genes were also up-regulated in MCS, as were a number of genes that that are indicative of greater differentiation in three-dimensional cultures.
Resumo:
Mechanistic models of pilling are discussed in general terms, and a framework for pilling simulations is thereby created. A fundamental flaw in earlier models of pilling is revealed. A more comprehensive model of fibre diffusion and withdrawal from the fabric is proposed, and this is solved in general terms to find the rate of fuzz growth. Fuzz wear-off and entanglement into pills are discussed. Fibre fatigue is introduced, and it is demonstrated that this potentially increases the rate of withdrawal of anchor fibres.
Resumo:
Haptotactic cell migration, a directed response to gradients of cell—extracellular matrix adhesion, is an important process in a number of biological phenomena such as wound healing and tumour cell invasion. Previously, mathematical models of haptotaxis have been developed on the premise that cells migrate in response to gradients in the density of the extracellular matrix. In this paper, we develop a novel mathematical model of haptotaxis which includes the adhesion receptors known as integrins and a description of their functional activation, local recruitment and protrusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell matter is able to respond to a true gradient of cell–matrix adhesion, represented by functionally active integrins. We also show that previous matrix-mediated models are in fact a subset of the novel integrin-mediated models, characterised by specific choices of diffusion and haptotaxis coefficients in their model equations. Numerical solutions suggest the existence of travelling waves of cell migration that are confirmed via a phase plane analysis of a simplified model.
Resumo:
Policy and social work practice currently lack a theoretical framework that adequately explains the emergence, diffusion, and continuance of the intercountry adoption (ICA) phenomenon. Using South Korea as a case study and the application of actor network theory to the ICA phenomenon, this paper introduces a theoretical approach that allows an examination of the complex interrelationships between the global and local influences of a country's engagement in ICA. This theoretical approach provides a different way of understanding the phenomenon, which, in turn, can better inform policies and practice that affect children and families across the globe.
Resumo:
Understanding and explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100 km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed ``hydrolytic weakening''. At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.
Resumo:
Land-surface processes include a broad class of models that operate at a landscape scale. Current modelling approaches tend to be specialised towards one type of process, yet it is the interaction of processes that is increasing seen as important to obtain a more integrated approach to land management. This paper presents a technique and a tool that may be applied generically to landscape processes. The technique tracks moving interfaces across landscapes for processes such as water flow, biochemical diffusion, and plant dispersal. Its theoretical development applies a Lagrangian approach to motion over a Eulerian grid space by tracking quantities across a landscape as an evolving front. An algorithm for this technique, called level set method, is implemented in a geographical information system (GIS). It fits with a field data model in GIS and is implemented as operators in map algebra. The paper describes an implementation of the level set methods in a map algebra programming language, called MapScript, and gives example program scripts for applications in ecology and hydrology.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.