154 resultados para Developmentally Important Genes
Resumo:
Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.
Resumo:
We used the expressed sequenced tags (ESTs) approach to study the genome of the cattle tick Boophilus microplus. One hundred and forty-two of our 234 unique ESTs were from genes not previously identified from ticks, mites or any other arachnids. The largest class of identified ESTs (29%) was from genes involved in transcription and translation. Ninety-one ESTs (39% of all ESTs) did not match any sequences in international databases; some of these may be specific to ticks. Thirteen percent of our ESTs were from ribosomal proteins and two ESTs were for genes implicated in resistance to pesticides. (C) 1998 Chapman & Hall Ltd.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.
Resumo:
We describe the isolation and characterisation of two putatively new acetylcholinesterase genes from the African cattle ticks Boophilus decoloratus and Rhipicephalus appendiculatus. The nucleotide sequences of these genes had 93% homology to each other and 95% and 91% identity, respectively, to the acetylcholinesterase gene from an Australian strain of another cattle tick, Boophilus microplus. Translation of the nucleotide sequences revealed putative amino acids that are essential for acetylcholinesterase activity: the active site serine, and the histidine and glutamate residues that associate with this serine to form the catalytic triad. All known acetylcholinesterases have three sets of cysteines that form disulfide bonds; however, the acetylcholinesterase genes of these three species of ticks encode only two sets of cysteines. Acetylcholinesterases of B. microplus from South Africa, Zimbabwe, Kenya and Mexico had 98-99% identity with acetylcholinesterase from B. microplus from Australia, whereas acetylcholinesterase from B. microplus from Indonesia was identical to that from Australia. Preliminary phylogenetic analyses surprisingly indicate that the acetylcholinesterases of ticks are closer phylogenetically to acetylcholinesterases of vertebrates than they are to those of other arthropods. (C) 1999 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Mycobacterium tuberculosis is an important pathogen of mammals that relies on 2-hydroxyphenyloxazoline-containing siderophore molecules called mycobactins for the acquisition of iron in the restrictive environment of the mammalian macrophage, These compounds have been proposed to be biosynthesized through the action of a cluster of genes that include both nonribosomal peptide synthase and polyketide synthase components. One of these genes encodes a protein, MbtB, that putatively couples activated salicylic acid with serine or threonine and then cyclizes this precursor to the phenyloxazoline ring system. We have used gene replacement through homologous recombination to delete the mbtB gene and replace this with a hygromycin-resistance cassette in the virulent strain of M. tuberculosis H37Rv, The resulting mutant is restricted for growth in iron-limited media but grows normally in iron-replete media. Analysis of siderophore production by this organism revealed that the biosynthesis of all salicylate-derived siderophores was interrupted. The mutant was found to be impaired for growth in macrophage-like THP-1 cells, suggesting that siderophore production is required for virulence of M. tuberculosis, These results provide conclusive evidence linking this genetic locus to siderophore production.
Resumo:
The study of 'molecular mimicry' or 'genetic piracy', with respect to the utilisation of cellular genes captured and modified during the course of virus evolution, has been an area of increasing research with the expansion in virus genome sequencing. Examples of cellular immunomodulatory genes which have been captured from hosts have been identified in a number of viruses. This review concentrates upon studies of murine cytomegalovirus (MCMV), investigating the functions of viral genes homologous to G protein-coupled receptors, MHC class I and chemokines, The study of recombinant MCMV engineered with specific disruptions of these genes has revealed their significance during virus replication and dissemination within the host, In the case of the latter two classes of genes, evidence suggests they interfere with cellular immune responses, although the detailed mechanisms underlying this interference have yet to be delineated. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues), In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks, This indicates that the non-catalytic FI-IA domain plays an important role in the transcriptional function of the Dun1p protein kinase. (C) 2000 Federation of European Biochemical Societies.
Resumo:
Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas.
Resumo:
Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526 kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343 aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xab promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239 aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of rhp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis. (C) 2000 Elsevier Science B.V. All rights reserved.