34 resultados para Data classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of LIDAR data and multispectral images. For that purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic model for the probability mass assignments of the method is validated, and rules for the tuning of the parameters of this model are discussed. Further we evaluate the contributions of the individual cues used in the classification process to the quality of the classification results. Our results show the degree to which the overall correctness of the results can be improved by fusing LIDAR data with multispectral images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.