60 resultados para Cryptic Prey
Resumo:
In many species, females are thought to benefit from polyandry due to the reduced risks of fertilization by genetically incompatible sperm. However, few studies that have reported such benefits have directly attributed variation in female reproductive success to the interacting effects of males and females at fertilization. In this paper, we determine whether male x female interactions influence fertilization in vitro in the free-spawning, sessile polychaete Galeolaria caespitosa. Furthermore, we determined whether polyandry results in direct fertilization benefits for females by experimentally manipulating the number of males contributing towards staged spawning events. To test for male x female interaction effects we performed an initial experiment that crossed seven males with six females (in all 42 combinations), enabling us to assess fertilization rates for each specific male-female pairing and attribute variation in fertilization success to males, females and their interaction. This initial experiment revealed a strong interaction between males and females at fertilization, confirming that certain male-female combinations were more compatible than others. A second experiment tested the hypothesis that polyandry enhances female reproductive success by exposing each female's eggs to either a single male's sperm (monandry) or the sperm from three males simultaneously (polyandry). We performed this second experiment at two ecologically relevant sperm concentrations. This latter experiment revealed a strong fertilization benefit of polyandry, independent of the effects of sperm concentration (which were also significant). We suggest that these direct fertilization gains arising from polyandry will constitute an important source of selection on females to mate multiply in nature.
Resumo:
There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.
Resumo:
Small mammals are subject to predation from mammalian, avian and reptilian predators. There is an obvious advantage for prey species to detect the presence of predators in their environment, enabling them to make decisions about movement and foraging behaviour based on perceived risk of predation. We examined the effect of faecal odours from marsupial and eutherian predators, and a native reptilian predator, on the behaviour of three endemic Australian rodent species (the fawn-footed melomys, Melomys cervinipes, the bush rat, Rattus fuscipes, and the giant white-tailed rat, Uromys caudimaculatus) in rainforest remnants on the Atherton Tableland, North Queensland, Australia. Infrared camera traps were used to assess visit rates of rodents to odour stations containing faecal and control odours. Rodents avoided odour stations containing predator faeces, but did not avoid herbivore or control odours. The responses of the three prey species differed: in the late wet season U. caudimaculatus avoided predator odours, whereas R. fuscipes and M. cervinipes did not. In contrast, in the late dry season all three species avoided odour stations containing predator odours. We speculate that these different responses may result from variation in life history traits between the species. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
Spiroacetals, cryptic ketodiols showing a hydroxyl group at both sides of a carbonyl whithin reachable distances are very widespread in nature. A group of 30 different structures, not including stereoisomers, represent volatile, less polar constituents of insect secretions. Five different systems were identified: 1,6-dioxaspirol[4.4]nonanes, 1,6-dioxaspiro[4.5]decanes, 1,6-dioxaspiro[4.6]undecanes, 1,7-dioxaspiro[5.5] undecanes, and 1,7-dioxaspiro[5.6]dodecanes. Some spiroacetals are insect pheromones: (2S,5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane, chalcogran, 1, is a key component of the male produced aggregation pheromone of the spruce bark beetle, Pityogenes cha2cographus. In contrast, (5S,7S)-7-methyl-1,6-dioxaspiro[4.5]decane, 2, conophthorin, acts as a repellent or spacer in several bark beetles. Racemic 1,7-diosaspiro[5.5]undecane, olean, 5, is the female produced sex pheromone of the olive fly, Bactrocera (Dacus) oleae. The most widespread spiroacetal is 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 8. Tt often forms a mixture of (E,E)- and (E,Z)-isomers, the (E,E)-isomer showing (2S,6R,8S)-configuration. In the solitary bee, Andrena wilkella, it serves as an aggregation pheromone. Present knowledge on structures and distribution of volatile spiroacetals is comprehensively compiled. Stereochemical aspects and mass spectrometric fragmentation patterns are discussed in detail to facilitate identifications of hitherto unknown compounds. Synthetic approaches to spiroacetals are classified and reviewed. Last but not least, facts and speculations on the biosynthesis of volatile spiroacetals are presented.
Resumo:
The most abundant natural enemies found in Cambodian rice field are spiders, mostly Araneus inustus and Pardosa pseudoannulata. These two hunting and wolf spider, respectively, are believed to actively contribute to brown planthopper (BPH) population control. However, how much each species attacks prey in Cambodian field condition is unknown. We conducted field experiments in Cambodia during the wet season at two locations, a famner's fields at Takeo and at CARDI, using both field cages and natural conditions. Cages were sprayed with insecticide to remove all pre-existing insects in the cages and then washed after 10 days to reduce insecticide residue. Results confirmed BPH inside the cage were killed by the insecticide. A known BPH population was reared inside the cages starting with 3 pairs of adults. Temporary cages were removed after counting second instar BPH and permanent cages were left in place. Spiders were released into the cages for 15 days. In permanent cages either two individual A. inustus or P. pseudoannulata were allowed to feed on BPH prey. Both spider species have the same killing ability in dense prey populations, but predation is higher for Pardosa at low prey density. In uncaged field environments (where more than just BPH prey are available) with a spider/BPH ratio 1:3 to 1:11 BPH mortality was 78–91%. Within 15 days in permanent cages spiders caused 100% BPH mortality at an average predator/prey ratio of 1:5 to 1:14. At a ratio of 1:18 or higher there was some BPH survival in cages.
Resumo:
The Australian Neoseiulus Hughes and Typhlodromips de Leon (Acari: Phytoseiidae: Amblyseiinae) are revised and diagnosed, and three new related genera, Knopkirie, gen. nov., Olpiseius, gen. nov. and Pholaseius, gen. nov. are proposed and diagnosed. In Australia, Neoseiulus contains at least 44 species, 18 of which are newly described here, in six species-groups: the barkeri-group, womersleyi-group, cucumeris-group, cangaro-group, paloratus-group, and the paspalivorus-group. Typhlodromips contains six species, two previously described and four new species. Knopkirie contains four species, three of which are newly described here, in two species-groups: the petri-group and the banksiae-group. Olpiseius contains three species, one of which is newly described, all placed in the noncollyerae-group, and Pholaseius is monotypic, with one newly described species. Diagnoses and keys are provided for all Australian species in each of the above genera, as are keys to the amblyseiine genera currently recognised in Australia.
Resumo:
The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.
Resumo:
The bridled nailtail wallaby is restricted to one locality in central Queensland, Australia. The population declined severely during a major drought between 1991 and 1995. We investigated age-specific covariates of survival and proximate causes of mortality from 1994 to 1997, using mark-recapture and radio-tagging techniques at two study sites. Using a matrix population model, we also modelled the effect of drought on age-specific survival and the intrinsic rate of population increase,;,. The only significant covariate of survival for adults was a measure of health unrelated to drought. Rainfall, food, predator activity, year, sex and habitat were not associated with variation in adult survival. Juvenile survival was negatively affected by drought, and predation was the proximate cause of most juvenile deaths. The matrix projection model showed that the observed juvenile survivorship during the drought was low enough to have produced a population decline, although fecundity and survival of other age classes was high throughout the study. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha (1)-adrenoceptors (rho -TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi -MrIA and chi -MrIB from the mollusk-hunting C. marmoreus). rho -TIA and chi -MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.
Resumo:
Cleaning behaviour has generally been viewed from the cleaner or client's point of view. Few studies, however, have examined cleaning behaviour from the parasites' perspective, yet they are the equally-important third players in such associations. All three players are likely to have had their evolution affected by the association. As cleaner organisms are important predators of parasites, cleaners are likely to have an important effect on their prey. Little, however, is known of how parasites are affected by cleaning associations and the strategies that parasites use in response to cleaners. I examine here what parasites are involved in cleaning interactions, the effect cleaners have on parasites, the potential counter-adaptations that parasites have evolved against the predatory activities of cleaner organisms, the potential influence of cleaners on the life history traits of parasites, and other factors affected by cleaners. I have found that a wide range of ectoparasites from diverse habitats have been reported to interact with a wide range of cleaner organisms. Some of the life history traits of parasites are consistent with the idea that they are in response to cleaner predation. It is clear, however, that although many cleaning systems exist their ecological role is largely unexplored. This has likely been hindered by our lack of information on the parasites involved in cleaning interactions.
Resumo:
The terrestrial carnivorous bladderwort, Utricularia uliginosa Vahl. (Lentibulariaceae) was studied to determine the species assemblage present in traps of these plants in situ across four sites over 15 months. The immediate soil environment was also sampled to determine the fauna present, and to compare the fauna present in traps with the fauna in the environment. The soil fauna consisted of 10 taxon types, which occupied either pelagic, epibenthic or interstitial microhabitats. All were found in traps of U. uliginosa, with the main prey being interstitial taxa followed by epibenthic and occasionally pelagic taxa. Numbers of individuals of the two most abundant soil taxa (nematodes, Elaphoidella) varied independently across the four sites over the 15 months of the study, as did numbers of Elaphoidella in the traps of U. uliginosa. Numbers of nematodes in the traps of U. uliginosa showed significant differences among sites, but not differences among times. Comparison of the trap fauna with the soil fauna revealed differences in relative abundance between soil samples and trap samples for two of the three taxa examined. There was an under-representation of nematodes in the traps relative to numbers in surrounding soil. There was an over-representation of the copepod Elaphoidella in the traps of U. uliginosa relative to numbers in soil at some of the times of sampling. Acarina were equally abundant in soil and trap samples. The patterns observed for Elaphoidella and nematodes may be due to selectivity in trapping by U. uliginosa, and/or differences in digestibility of the prey. Elaphoidella individuals were found to be attracted to U. uliginosa in a behavioural experiment. This may contribute to the over-representation of Elaphoidella in the traps of U. uliginosa in the field.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
A total of 2071 individual prey items were identified from 34 active and 55 inactive wedge-tailed eagle nests following the 1995, 1996 and 1997 breeding seasons. Overall, the eagle's diet was comparable to that reported in other studies within semi-arid regions, with rabbits, reptiles and macropods accounting for 47.8, 22.6 and 13.7% of prey items, respectively. In spring 1996 rabbit calicivirus moved into the study area, resulting in a 44-78% reduction in rabbit abundance (Sharp et al. 2001). An index was developed to enable the time since death for individual prey items to be approximated and a historical perspective of the eagle's diet to be constructed. Rabbits constituted 56-69% of dietary items collected during the pre-rabbit calicivirus disease (RCD) samples, but declined to 31% and 16% in the two post-RCD samples. A reciprocal trend was observed for the proportion of reptiles in the diet, which increased from 8-21% of pre-RCD dietary items to 49-54% after the advent of RCD. Similarly, the proportion of avian prey items was observed to increase in the post-RCD samples. These data suggested that prey switching may have occurred following the RCD epizootic. However, a lack of data on the relative abundances of reptiles and birds prevented an understanding of the eagle's functional responses to be developed and definitive conclusions to be drawn. Nevertheless, the eagles were observed to modify their diet to the change in rabbit densities by consuming larger quantities of native prey species.
Resumo:
Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.
Resumo:
Argyrodes Simon 1864 is a large, cosmopolitan theridiid genus whose members exhibit a wide range of foraging techniques which usually involve exploiting other spiders, either by using their webs, stealing their food, or preying on them directly. We held a symposium on this genus at the 15th International Congress of Arachnology, Badplaas, South Africa in order to obtain a clearer perspective on the relationship between the phylogeny of the genus and the different foraging techniques. We concluded that Argyrodes forms a monophyletic group within the Theridiidae, and that there are clear monophyletic clades within the genus (already identified as species groups) that appear to share behavioral characteristics. We found no clear indication that foraging behaviors such as kleptoparasitism (stealing food) evolved from araneophagy (eating spiders) or vice versa. However, it appears that species that specialize in either kleptoparasitism or araneophagy use additional techniques in comparison to species that readily use both foraging modes. During our examination of Argyrodes/host interactions we noted the importance of Nephila species as hosts of Argyrodes species around the world and the impact of Argyrodes on Nephila. We also noted the fluid nature of the relationship between Argyrodes and the spiders with which they interact. For example, an Argyrodes/host relationship can change to an Argyrodes/prey relationship, and the type of kleptoparasitic behavior employed by an Argyrodes can change when it changes host species. The importance of eating silk was also noted and identified as an area for further research. We concluded that more work involving international collaboration is needed to fully understand the phylogeny of the genus and the relationships between the different types of foraging behaviors.