72 resultados para Covariance matrix decomposition
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
We consider algorithms for computing the Smith normal form of integer matrices. A variety of different strategies have been proposed, primarily aimed at avoiding the major obstacle that occurs in such computations-explosive growth in size of intermediate entries. We present a new algorithm with excellent performance. We investigate the complexity of such computations, indicating relationships with NP-complete problems. We also describe new heuristics which perform well in practice. Wie present experimental evidence which shows our algorithm outperforming previous methods. (C) 1997 Academic Press Limited.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Background: Oral lichen planus (OLP) is characterized by a subepithelial lymphocytic infiltrate, basement membrane (BM) disruption, intra-epithelial T-cell migration and apoptosis of basal keratinocytes. BM damage and T-cell migration in OLP may be mediated by matrix metalloproteinases (MMPs). Methods: We examined the distribution, activation and cellular sources of MMPs and their inhibitors (TIMPs) in OLP using immunohistochemistry, ELISA, RT-PCR and zymography. Results: MMP-2 and -3 were present in the epithelium while MMP-9 was associated with the inflammatory infiltrate. MMP-9 and TIMP-1 secretion by OLP lesional T cells was greater than OLP patient (p
Resumo:
Codes C-1,...,C-M of length it over F-q and an M x N matrix A over F-q define a matrix-product code C = [C-1 (...) C-M] (.) A consisting of all matrix products [c(1) (...) c(M)] (.) A. This generalizes the (u/u + v)-, (u + v + w/2u + v/u)-, (a + x/b + x/a + b + x)-, (u + v/u - v)- etc. constructions. We study matrix-product codes using Linear Algebra. This provides a basis for a unified analysis of /C/, d(C), the minimum Hamming distance of C, and C-perpendicular to. It also reveals an interesting connection with MDS codes. We determine /C/ when A is non-singular. To underbound d(C), we need A to be 'non-singular by columns (NSC)'. We investigate NSC matrices. We show that Generalized Reed-Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-Muller codes, as are the ternary 'Main Sequence codes'. We obtain a simpler proof of the minimum Hamming distance of such families of codes. If A is square and NSC, C-perpendicular to can be described using C-1(perpendicular to),...,C-M(perpendicular to) and a transformation of A. This yields d(C-perpendicular to). Finally we show that an NSC matrix-product code is a generalized concatenated code.
Resumo:
The genetic and environmental contributions to educational attainment in Australia are examined using a multiple regression model drawn from the medical research literature. Data from a large sample of Australian twins are analysed. The findings indicate that at least as much as 50 percent and perhaps as much as 65 percent of the variance in educational attainments can be attributed to genetic endowments. It is suggested that only around 25 percent of the variance in educational attainments may be due to environmental factors, though this contribution is shown to be around 40 percent when adjustments for measurement error and assortative mating are made. The high fraction of the observed variation in educational attainments due to genetic differences is consistent with results reported by Heath et al. (Heath, A.C., Berg, K., Eaves, L.J., Solaas, M.H., Corey, L.A., Sundet, J., Magnus, P., Nance, W.E., 1985. Education policy and the heritability of educational attainment. Nature 314(6013), 734-736.), Tambs et al. (Tambs, K., Sundet, J.M., Magnus, P., Berg, K., 1989. Genetic and environmental contributions to the covariance between occupational status, educational attainment and IQ: a study of twins. Behavior Genetics 19(2), 209-222.), Vogler and Fulker (Vogler, G.P., Fulker, D.W., 1983. Familial resemblance for educational attainment. Behavior Generics 13(4), 341-354.) and Behrman and Taubman (Behrman, J., Taubman, P., 1989. Is schooling mostly in the genes? Nature-nurture decomposition using data on relatives. Journal of Political Economy 97(6), 1425-1446.), suggesting that the finding is robust. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Using the classical twin design, this study investigates the influence of genetic factors on the large phenotypic variance in inspection time (IT), and whether the well established IT-IQ association can be explained by a common genetic factor. Three hundred ninety pairs of twins (184 monozygotic, MZ; 206 dizygotic, DZ) with a mean age of 16 years participated, and 49 pairs returned approximately 3 months, later for retesting. As in many IT studies, the pi figure stimulus was used and IT was estimated from the cumulative normal ogive. IT ranged from 39.4 to 774.1 ms (159 +/- 110.1 ms) with faster ITs (by an average of 26.9 ms) found in the retest session from which a reliability of .69 was estimated. Full-scale IQ (FIQ) was assessed by the Multidimensional Aptitude Battery (MAB) and ranged from 79 to 145 (111 +/- 13). The phenotypic association between IT and FIQ was confirmed (- .35) and bivariate results showed that a common genetic factor accounted for 36% of the variance in IT and 32% of the variance in FIQ. The maximum likelihood estimate of the genetic correlation was - .63. When performance and verbal IQ (PIQ & VIQ) were analysed with IT, a stronger phenotypic and genetic relationship was found between PIQ and IT than with VIQ. A large part of the IT variance (64%) was accounted for by a unique environmental factor. Further genetic factors were needed to explain the remaining variance in IQ with a small component of unique environmental variance present. The separability of a shared genetic factor influencing IT and IQ from the total genetic variance in IQ suggests that IT affects a specific subcomponent of intelligence rather than a generalised efficiency. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The genetic relationship between lower (information processing speed), intermediate (working memory), and higher levels (complex cognitive processes as indexed by IQ) of mental ability was studied in a classical twin design comprising 166 monozygotic and 190 dizygotic twin pairs. Processing speed was measured by a choice reaction time (RT) task (2-, 4-, and 8-choice), working memory by a visual-spatial delayed response task, and IQ by the Multidimensional Aptitude Battery. Multivariate analysis, adjusted for test-retest reliability, showed the presence of a genetic factor influencing all variables and a genetic factor influencing 4- and 8-choice RTs, working memory, and IQ. There were also genetic factors specific to 8-choice RT, working memory, and IQ. The results confirmed a strong relationship between choice RT and IQ (phenotypic correlations: -0.31 to -0.53 in females, -0.32 to -0.56 in males; genotypic correlations: -0.45 to -0.70) and a weaker but significant association between working memory and IQ (phenotypic: 0.26 in females, 0.13 in males; genotypic: 0.34). A significant part of the genetic variance (43%) in IQ was not related to either choice RT or delayed response performance, and may represent higher order cognitive processes.
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.