47 resultados para Corrosion.
Resumo:
Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.
Resumo:
The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D approximate to AM60 approximate to MEZ >= AZ91D-DC >= AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the results of atmospheric corrosion testing and of an examination of patina samples from Brisbane, Denmark, Sweden, France, USA and Austria. The aim was threefold: (1) to determine the structure of natural patinas and to relate their structure to their appearance in service and to the atmospheric corrosion of copper; (2) to understand why a brown rust coloured layer forms on the surface of some copper patinas; (3) to understand why some patinas are still black in colour despite being of significant age. During the atmospheric corrosion of copper, a two-layer patina forms on the copper surface. Cuprite is the initial corrosion product and cuprite is always the patina layer in contact with the copper. The growth laws describing patina formation indicate that the decreasing corrosion rate with increasing exposure time is due to the protective nature of the cuprite layer. The green patinas were typically characterised by an outer layer of brochantite, which forms as individual crystals on the surface of the cuprite layer, probably by a precipitation reaction from an aqueous surface layer on the cuprite layer. Natural patinas come in a variety of colours. The colour is controlled by the amount of the patina and its chemical composition. Thin patinas containing predominantly cuprite were black. If the patina was sufficiently thick, and the [Fe]/[Cu] ratio was low, then the patina was green, whereas if the [Fe]/[Cu] ratio was approximately 10 at%, then the patina is rust brown in colour. The iron was in solid solution in the brochantite, which might be designated as a (copper/iron) hydroxysulphate. In the brown patinas examined, the iron was distributed predominately in the outermost part of the patina. (c) 2005 Elsevier Ltd. All rights reserved.