35 resultados para Condition monitoring, SWOT analysis
Resumo:
Observations of an insect's movement lead to theory on the insect's flight behaviour and the role of movement in the species' population dynamics. This theory leads to predictions of the way the population changes in time under different conditions. If a hypothesis on movement predicts a specific change in the population, then the hypothesis can be tested against observations of population change. Routine pest monitoring of agricultural crops provides a convenient source of data for studying movement into a region and among fields within a region. Examples of the use of statistical and computational methods for testing hypotheses with such data are presented. The types of questions that can be addressed with these methods and the limitations of pest monitoring data when used for this purpose are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
The volume of the primary (PCS) and secondary (SCS) circulatory system in the Atlantic cod Gadus morhua was determined using a modified dye dilution technique. Cod (N=10) were chronically cannulated in the second afferent branchial artery with PE-50 tubing. Evans Blue dye was bound to harvested fish plasma at a concentration of 1 mg dye ml(-1) plasma, and injected at a concentration of 1 mg kg(-1) body mass. Serial sampling from the cannula produced a dye dilution curve, which could be described by a double exponential decay equation. Curve analysis enabled the calculation of the primary circulatory and total distribution volume. The difference between these volumes is assumed to be the volume of the SCS. From the dilution curve, it was also possible to calculate flow rates between and within the systems. The results of these experiments suggest a plasma volume in the PCS of 3.42+/-0.89 ml 100 g(-1) body mass, and in the SCS of 1.68+/-0.35 ml 100 g(-1) body mass (mean +/- S.D.) or approximately 50% that of the PCS. Flow rates to the SCS were calculated as 2.7% of the resting cardiac output. There was an allometric relationship between body mass and blood volumes. Increasing condition factor showed a tendency towards smaller blood volumes of the PCS, expressed as percentage body mass, but this was not evident for the volume of the SCS.
Resumo:
This paper presents a review of the time-domain polarization measurement techniques for the condition assessment of aged transformer insulation. The polarization process is first described with appropriate dielectric response theories and then commonly used polarization methods are described with special emphasis on the most widely used return voltage(rv) measurement. Most recent emphasis has been directed to techniques of determining moisture content of insulation indirectly by measuring rv parameters. The major difficulty still lies with the accurate interpretation of return voltage results. This paper investigates different thoughts regarding the interpretation of rv results for different moisture and ageing conditions. Other time domain polarization measurement techniques and their results are also presented in this paper.
Resumo:
Increased professionalism in rugby has elicited rapid changes in the fitness profile of elite players. Recent research, focusing on the physiological and anthropometrical characteristics of rugby players, and the demands of competition are reviewed. The paucity of research on contemporary elite rugby players is highlighted, along with the need for standardised testing protocols. Recent data reinforce the pronounced differences in the anthropometric and physical characteristics of the forwards and backs. Forwards are typically heavier, taller, and have a greater proportion of body fat than backs. These characteristics are changing, with forwards developing greater total mass and higher muscularity. The forwards demonstrate superior absolute aerobic and anaerobic power, and Muscular strength. Results favour the backs when body mass is taken into account. The scaling of results to body mass can be problematic and future investigations should present results using power function ratios. Recommended tests for elite players include body mass and skinfolds, vertical jump, speed, and the multi-stage shuttle run. Repeat sprint testing is a possible avenue for more specific evaluation of players. During competition, high-intensity efforts are often followed by periods of incomplete recovery. The total work over the duration of a game is lower in the backs compared with the forwards; forwards spend greater time in physical contact with the opposition while the backs spend more time in free running, allowing them to cover greater distances. The intense efforts undertaken by rugby players place considerable stress on anaerobic energy sources, while the aerobic system provides energy during repeated efforts and for recovery. Training should focus on repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasise the higher work rates of the game, while extended rest periods can be provided to the backs. Players should not only be prepared for the demands of competition, but also the stress of travel and extreme environmental conditions. The greater professionalism of rugby union has increased scientific research in the sport; however, there is scope for significant refinement of investigations on the physiological demands of the game, and sports-specific testing procedures.