34 resultados para Coastal zone management -- Spain
Resumo:
Contaminant transport in coastal aquifers is of increasing interest since, with the development of coastal areas, contaminants from surface sources may enter coastal aquifers and pollute the groundwater flow. Coastal groundwater flow is complicated because of the presence of a freshwater-saltwater diffusion zone and the tidal variation of sea level at the seaward end. This paper investigates experimentally the behaviour of contaminant plumes with different densities in an unconfined coastal aquifer. Experiments were performed in a flow tank filled with glass beads as the porous medium. Results show that the dense contaminant has a more diffusive front than the less dense one in the seaward direction towards the coastline. The plume becomes more diffusive when it travels closer to the saltwater interface. On the contrary, the less dense contaminant presents a relatively sharp outline. It tends to migrate in the upper portion of the aquifer and exits in a concentrated manner over a small discharge area at the coastline, not further seaward under the sea. Non-dimensional parameters show that instabilities occur in our experiments for a density difference of 1.2% or larger between the contaminant and the ambient water. The experimental results provide guidance for field monitoring and numerical modelling. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper employs a two-dimensional variable density flow and transport model to investigate the transport of a dense contaminant plume in an unconfined coastal aquifer. Experimental results are also presented to show the contaminant plume in a freshwater-seawater flow system. Both the numerical and experimental results suggest that the neglect of the seawater interface does not noticeably affect the horizontal migration rate of the plume before it reaches the interface. However, the contaminant will travel further seaward and part of the solute mass will exit under the sea if the higher seawater density is not included. If the seawater density is included, the contaminant will travel upwards towards the beach along the freshwater-saltwater interface as shown experimentally. Neglect of seawater density, therefore, will result in an underestimate of solute mass rate exiting around the coastline. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Previous studies on tidal water table dynamics in unconfined coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction based on the assumption of a straight coastline. Here, two-dimensional analytical solutions are derived to study the effects of rhythmic coastlines on tidal water table fluctuations. The computational results demonstrate that the alongshore variations of the coastline can affect the water table behavior significantly, especially in areas near the centers of the headland and embayment. With the coastline shape effects ignored, traditional analytical solutions may lead to large errors in predicting coastal water table fluctuations or in estimating the aquifer's properties based on these signals. The conditions under which the coastline shape needs to be considered are derived from the new analytical solution.
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.