52 resultados para Changing Permafrost in the Arctic and its Global Effects in the 21st Century
Resumo:
In this paper we identify elements in Marx´s economic and political writings that are relevant to contemporary critical discourse analysis (CDA). We argue that Marx can be seen to be e n gaging in a form of discourse analysis. We identify the elements in Marx´s historical materialist method that support such a perspective, and exemplify these in a longitudinal comparison of Marx´s texts.
Resumo:
Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.
Resumo:
We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.
Resumo:
Soluble organic nitrogen, including protein and amino acids, was found to be a ubiquitous form of soil N in diverse Australian environments. Fine roots of species representative of these environments were found to be active in the metabolism of glycine. The ability to incorporate [N-15]glycine was widespread among plant species from subantarctic to tropical communities. In species from subantarctic herbfield, subtropical coral cay, subtropical rainforest and wet heathland, [N-15]glycine incorporation ranged from 26 to 45% of (NH4+)-N-15 incorporation and was 2- to 3-fold greater than (NO3-)-N-15 incorporation. Most semiarid mulga and tropical savanna woodland species incorporated [N-15]glycine and (NO3-)-N-15 in similar amounts, 18-26% of (NH4+)-N-15 incorporation. We conclude that the potential to utilise amino acids as N sources is of widespread occurrence in plant communities and is not restricted to those from low temperature regimes or where N mineralisation is limited. Seedlings of Hakea (Proteaceae) were shown to metabolise glycine, with a rapid transfer of N-15 from glycine to serine and other amino compounds. The ability to take up and metabolise glycine was unaffected by the presence of equimolar concentrations of NO3- and NH4+. Isonicotinic acid hydrazide (INH) did not inhibit the transfer of N-15-label from glycine to serine indicating that serine hydroxymethyltransferase was not active in glycine catabolism. In contrast aminooxyacetate (AOA) strongly inhibited transfer of N-15 from glycine to serine and labelling of other amino compounds, suggesting that glycine is metabolised in roots and cluster roots of Hakea via an aminotransferase.
Resumo:
The cloacal complex of Crocodylus porosus is composed of three chambers (proctodaeum, urodaeum, and coprodaeum) separated by tight, muscular sphincters. The proctodaeum is proximal to the cloacal vent and houses the genitalia. The urodaeum is the largest chamber, is capable of storing large quantities of urine, and is lined with an epithelium with the capacity for transepithelial water and ion exchange. The coprodaeum, the most orad cloacal chamber, is a small, only marginally expandable chamber that has an epithelium composed almost entirely of mucus-secreting cells. The coprodaeum and lower intestine are reported to be the site(s) for urine modification in birds and bladderless lizards. A radiographic trace of urine storage in C. porosus kept for 2 months under hyperosmotic conditions showed no signs of retrograde movement of urine into the coprodaeum or rectum. Instead, urine was stored in the urodaeum of C. porosus. Examination of the mucosal surface of the urodaeum by SEM showed a plastic response to environmental salinity, with a possible increase in surface area in animals kept in hyperosmotic water compared with animals from fresh water. We propose the urodaeum as the primary site for postrenal modification of urine in C, porosus. (C) 2000 Wiley-Liss, Inc.
Resumo:
BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.
Resumo:
To discover the developmental relationship between the auditory brainstem response (ABR) and the focal inferior colliculus (IC) response, 32 young tammar wallabies were used, by the application of simultaneous ABR and focal brainstem recordings, in response to acoustic clicks and tone bursts of seven frequencies. The ic or the tammar wallaby undergoes a rapid functional development from postnatal day (PND) 114 to 160. The earliest (PND 114) auditory evoked response was recorded from the rostral IC. With development, more caudal parts of the IC became functional until age about PND 127, when all parts of the IC were responsive to sound. Along a dorsoventral direction, the duration of the IC response decreased, the peak latency shortened, while the amplitude increased, reaching a maximum value at the central IC, then decreased. After PND 160, the best frequency (BF) of the ventral IC was the highest, with values between 12.5 and 16 kHz, the BF of the dorsal IC was the lowest, varying between 3.2 and 6.4 kHz, while the BF of the central IC was between 6.4 and 12.5 kHz. Between PND 114 and 125, the IC response did not have temporal correlation with the ABR. Between PND 140 and 160, only the early components of the responses from the ventral and central IC correlated with the P4 waves of the ABR. After PND 160, responses recorded from different depths of the IC had a temporal correlation with the ABR. (C) 2001 Published by Elsevier Science B.V.
Resumo:
1. An isolated perfused rat liver (IPRL) preparation was used to investigate separately the disposition of the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP), its reactive acyl glucuronide metabolite (NAG) and a mixture of NAG rearrangement isomers (isoNAG), each at 30 mug NAP equivalents ml(-1) perfusate (n = 4 each group). 2. Following administration to the IPRL, NAP was eliminated slowly in a log-linear manner with an apparent elimination half-life (t(1/2)) of 13.4 +/-4.4 h. No metabolites were detected in perfusate, while NAG was the only metabolite present in bile in measurable amounts (3.9 +/-0.8%, of the dose). Following their administration to the IPRL, both NAG and isoNAG were rapidly hydrolysed (t(1/2) in perfusate=57 +/-3 and 75 +/- 14min respectively). NAG also rearranged to isoNAG in the perfusate. Both NAG and isoNAG were excreted intact in bile (24.6 and 14.8% of the NAG and isoNAG doses, respectively). 3. Covalent NAP-protein adducts in the liver increased as the dose changed from NAP to NAG to isoNAG (0.20 to 0.34 to 0.48% of the doses, respectively). Similarly, formation of covalent NAP-protein adducts in perfusate were greater in isoNAG-dosed perfusions. The comparative results Suggest that isoNAG is a better substrate for adduct formation with liver proteins than NAG.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.