40 resultados para Capacity sharing
Resumo:
Experiments involving 14 accessions of Panicum miliaceum L. (Proso millet) and 11 accessions of Setaria italica L. (Foxtail millet) have demonstrated variability in the degree of osmoregulative capacity among these accessions. Birdseed millet is generally claimed to be sensitive to drought stress, apparently because of a shallow root system. Accessions with high osmoregulative capacity demonstrate at least some drought tolerance. Osmoregulative capacity was measured on flag leaves of headed millet plants in pots undergoing water stress in a controlled environment chamber. Osmoregulative capacity was determined from the relationship between osmotic potential and leaf water potential; and the logarithmic relationship between osmotic potential and relative water content. The group of accessions of S. italica showed an overall level of osmoregulative capacity which was greater than that observed for the group of P. miliaceum accessions. Four accessions of S. italica (108042, 108463, 108541 and 108564) and one accession of P. miliaceum (108104) demonstrated high osmoregulative capacity. Differences of 1.05 MPa or more between observed and estimated osmotic potential were found at relative water contents of 80 % among these accessions. The extent of osmoregulative capacity was associated with osmotic potential at full turgor and the rate of decline in osmotic potential as leaf water potentail declined.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In the reproductive biology of organisms, a continuum exists from "highly reproductive species" at one end to "survivor species" at the other end. Among other factors, the position of a species along this continuum affects its sensitivity to human exploitation and its vulnerability to extinction. Flying foxes are long-lived, seasonal breeders, with a rigid, well-defined breeding season that is largely or wholly genetically determined. Unlike opportunistic, highly reproductive species, such as rabbits or mice, female flying foxes are unable to produce viable young before their second or third year of life, and are then capable of producing just one young per year. Such a breeding strategy will be successful only if flying-foxes are long-lived and suffer naturally low mortality rates. In this paper, we assess the vulnerability of flying foxes to extinction, using basic parameters of reproduction observed in the wild, and in captive breeding colonies of P. poliocephalus, P. alecto and P. scapulatus, and survival rates that are likely to apply to Australian conditions. Our models show explicitly that flying-fox populations have a very low capacity for increase, even under the most ideal conditions. The implications of our models are discussed in reference to the long-term management and conservation needs of Australian flying foxes. We conclude that current death-rates of flying-foxes in NSW and Queensland fruit orchards are putting state populations at serious risk.
Testamentary capacity and aphasia: A descriptive case report with implications for clinical practice
Resumo:
Background: Testamentary capacity (the capacity to make a will) is recognised in the literature as an important issue for speech-language pathologists' assessment of people with aphasia, but current guidelines for clinical practice lack an empirical base. Aims: The research aimed to suggest some guidelines for clinical practice based on information considered relevant for the court in determining testamentary capacity. Methods & Procedures: A recent legal case involving a challenge to the will of a woman with severe aphasia was critically examined with reference to current guidelines in the literature regarding assessment of testamentary capacity. Outcomes & Results: Examination of the information available on the case indicated that the judge gave priority to accounts of the everyday communication of the person with aphasia (including reported discourse samples) over the information provided by expert medical witnesses. The extent to which communication effectiveness could be maximised was found to be a matter of key significance to the determination of capacity. Conclusions: This study has implications for speech-language pathologists' assessment practices and reports, as well as for scope of practice with regard to legal decision making of people with aphasia. These issues are discussed in relation to the World Health Organisation's ICF framework of functioning for social participation.