60 resultados para Canine kalazar
Resumo:
Possible mechanisms of adverse drug effects in asthma include worsening of cellular hyperplasia and stimulation of extracellular matrix deposition. In this study, salbutamol, dexamethasone and beclomethasone were investigated to ascertain their ability to induce mitogenesis and stimulate fibronectin expression in cultured canine airway smooth muscle cells. In cells maintained in serum-free media for 72 h, salbutamol(1 nM-10 mu M) caused mitogenesis. The control cells had 2.57 +/- 0.34 x 10(5) cells per mi (mean +/- SEM, N = 13), while salbutamol (1 mu M) caused a maximal increase in cell number to 3.57 +/- 0.23 x 10(5) cells/ml (P < 0.01). In cells stimulated to replicate by addition of either fetal bovine serum or canine serum, no additional mitogenic effect of salbutamol was seen. Salbutamol did not have a detectable quantitative effect on fibronectin matrix expression. The glucocorticoids, beclomethasone and dexamethasone, significantly altered fibronectin expression by cultured airway smooth muscle cells. Beclomethasone increased fibronectin expression, while dexamethasone decreased expression.
Resumo:
The prevalence and risk factors associated with canine gastrointestinal parasitic zoonoses and the role of dogs in the mechanical transmission of human Ascaris infection was examined in three tea estates in Assam, India. Nearly all (99%) dogs harbored one or more zoonotic species of gastrointestinal parasites, with hookworm infection being most common (94%). Parasitic stages presumed to be host-specific for humans such as Ascaris spp. (31%), Trichuris trichiura (25%), and Isospora belli (2%) were also recovered from dog feces. A polymerase chain reaction-linked restriction fragment length polymorphism technique was used to differentiate the species of Ascaris eggs in dog feces. The results of this study demonstrate the role of the dog as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation by humans occurs.
Resumo:
Canine parasitic zoonoses pose a continuing public health problem, especially in developing countries and communities that are socioeconomically disadvantaged. Our study combined the use of conventional and molecular epidemic, logical tools to determine the role of dogs in transmission of gastrointestinal (GI) parasites such as hookworms, Giardia and Ascaris in a parasite endemic teagrowing community in northeast India. A highly sensitive and specific molecular tool was developed to detect and differentiate the zoonotic species of canine hookworm eggs directly from faeces. This allowed epidemiological screening of canine hookworm species in this community to be conducted with ease and accuracy. The zoonotic potential of canine Giardia was also investigated by characterising Giardia duodenalis recovered from humans and dogs living in the same locality and households at three different loci. Phylogenetic and epidemiological analysis provided compelling evidence to support the zoonotic transmission of canine Giardia. Molecular tools were also used to identify the species of Ascaris egg present in over 30% of dog faecal samples. The results demonstrated the role of dogs as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation practices exist. Our study demonstrated the usefulness of combining conventional and molecular parasitological and epidemiological tools to help solve unresolved relationships with regards to parasitic zoonoses.
Resumo:
The prevalence of colonization with the anaerobic intestinal spirochaetes Brachyspira aalborgi and Brachyspira pilosicoli was investigated in humans (n = 316) and dogs (n = 101) living on three tea estates in Assam, India. Colonization was detected using PCR on DNA from faeces. Nineteen (6%) human faecal samples contained B. aalborgi DNA, 80 (25.3%) contained B. pilosicoli DNA, and 10 (3.2%) contained DNA from both species. One canine sample contained DNA from B. pilosicoli. Significant factors for B. aalborgi colonization in logistic regression were: infection of family members with B. aalborgi (P < 0.001), being a resident of Balipara (P = 0.03), and use of water treatment (P = 0.03). For B. pilosicoli, significant factors were: other family members being positive for B. pilosicoli (P < 0.001), water obtained from a well (P = 0.006), water treatment (P = 0.03), and not having visited a doctor in the previous 12 months (P = 0.03).
Resumo:
Giardia duodenalis isolates recovered from humans and clogs living in the same locality in a remote tea-growing community of northeast India were characterized at 3 different loci; the SSU-rDNA, elongation factor 1-alpha (ef1-alpha) and triose phosphate isomerase (tpi) gene. Phylogenetic analysis of the SSU-rDNA and ef1-alpha genes provided poor genetic resolution of the isolates within various assemblages, stressing the importance of using multiple loci when inferring genotypes to Giardia. Analysis of the tpi gene provided better genetic resolution and placed canine Giardia isolates within the genetic groupings of human isolates (Assemblages A and B). Further evidence for zoonotic transmission was supported by epidemiological data showing a highly significant association between the prevalence of Giardia in humans and presence of it Giardia-positive dog in the same household (odds ratio 3.01, 95%) CI, 1.11, 8.39, P = 0.0000).
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.