56 resultados para CYTOCHROME P450 ACTIVITY (CYP450)
Resumo:
Relationships between cadmium (Cd) body burden, kidney function and coumarin metabolism were investigated using two groups of 197 and 200 healthy Thais with men and women in nearly equal numbers. A mean age of one group was 30.5 years and it was 39.3 years for the other group. Of 397, 20 subjects (5%) excreted urine Cd between 1.4 mug/g and 3.8 mug/g creatinine and these subjects faced 10-15% increase in the probability of having abnormal urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG-uria). The prevalence of NAG-uria varied with Cd body burden in a dose-dependent manner (chi(2) = 22, P < 0.008). Also NAG-nuria was one of the three kidney effect markers tested that showed the greatest strength of correlation with urine Cd in both men and women (r = 0.48 P < 0.001). In addition, urine Cd excretion of men and women showed a positive correlation (r = 0.46 to 0.54. P < 0.001) with urine 7-hydroxycoumarin (7-OHC) excretion which was used as a marker of liver cytochrome P450 2A6 (CYP2A6) enzyme activity. Urinary CA excretion accounted for 25% of the total variation in urine 7-OHC excretion (P < 0.001). These data suggest that Cd may increase the expression of CYP2A6 in liver, resulting in enhanced coumarin metabolism in subjects with high Cd body burden. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We examined the interrelationships between phenotype of hepatic cytochrome P450 2A6 (CYP2A6), nephropathy, and exposure to cadmium and lead in a group of 118 healthy Thai men and women who had never smoked. Their urinary Cd excretion ranged from 0.05 to 2.36 mug/g creatinine, whereas their urinary Pb excretion ranged from 0.1 to 12 mug/g creatinine. Average age and Cd burden of women and men did not differ. Women, however, on average showed a 46% higher urinary Pb excretion (p < 0.001) and lower zinc status, suggested by lower average serum Zn and urinary Zn excretion compared with those in men. Cd-linked nephropathy was detected in both men and women. However, Pb-linked nephropathy was seen only in women, possibly because of higher Pb burden coupled with lower protective factors, notably of Zn (P < 0.001), in women compared with men. In men, Pb burden showed a negative association with CYP2A6 activity (adjusted beta = -0.29, p = 0.003), whereas Cd burden showed a positive association with CYP2A6 activity (adjusted beta = 0.38, p = 0.001), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. The weaker correlation between Cd burden CYP2A6 activity in women despite similarity in Cd burden between men and women is consistent with opposing effects of Pb and Cd on hepatic CYP2A6 phenotypic expression. A positive correlation between Cd-linked nephropathy (urinary N-acetyl-beta-D-glucosaminidase excretion) and CYP2A6 activity in men (r = 0.39, p = 0.002) and women (r = 0.37, p = 0.001) suggests that Cd induction of hepatic CYP2A6 expression and Cd-linked nephropathy occurred simultaneously.
Resumo:
Cytochrome P450(Biol) (CYP107H1) is believed to supply pimelic acid equivalents for biotin biosynthesis in Bacillus subtilis: we report here that the mechanistic pathway adopted by this multifunctional P450 for the in-chain cleavage of fatty acids is via consecutive formation of alcohol and threo-diol intermediates, with the likely absolute configuration of the intermediates also reported.
Resumo:
This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.
Resumo:
Relaxation of the upper age limits for solid organ transplantation coupled with improvements in post-transplant survival have resulted in greater numbers of elderly patients receiving immunosuppressant drugs such as tacrolimus. Tacrolimus is a potent agent with a narrow therapeutic window and large inter- and intraindividual pharmacokinetic variability. Numerous physiological changes occur with aging that could potentially affect the pharmacokinetics of tacrolimus and, hence, patient dosage requirements. Tacrolimus is primarily metabolised by cytochrome P450 (CYP) 3A enzymes in the gut wall and liver. It is also a substrate for P-glycoprotein, which counter-transports diffused tacrolimus out of intestinal cells and back into the gut lumen. Age-associated alterations in CYP3A and P-glycoprotein expression and/or activity, along with liver mass and body composition changes, would be expected to affect the pharmacokinetics of tacrolimus in the elderly. However, interindividual variation in these processes may mask any changes caused by aging. More investigation is needed into the impact aging has on CYP and P-glycoprotein activity and expression. No single-dose, intense blood-sampling study has specifically compared the pharmacokinetics of tacrolimus across different patient age groups. However, five population pharmacokinetic studies, one in kidney, one in bone marrow and three in liver transplant recipients, have investigated age as a co-variate. None found a significant influence for age on tacrolimus bioavailability, volume of distribution or clearance. The number of elderly patients included in each study, however, was not documented and may have been only small. It is likely that inter- and intraindividual pharmacokinetic variability associated with tacrolimus increase in elderly populations. In addition to pharmacokinetic differences, donor organ viability, multiple co-morbidity, polypharmacy and immunological changes need to be considered when using tacrolimus in the elderly. Aging is associated with decreased immunoresponsiveness, a slower body repair process and increased drug adverse effects. Elderly liver and kidney transplant recipients are more likely to develop new-onset diabetes mellitus than younger patients. Elderly transplant recipients exhibit higher mortality from infectious and cardiovascular causes than younger patients but may be less likely to develop acute rejection. Elderly kidney recipients have a higher potential for chronic allograft nephropathy, and a single rejection episode can be more devastating. There is a paucity of information on optimal tacrolimus dosage and target trough concentration in the elderly. The therapeutic window for tacrolimus concentrations may be narrower. Further integrated pharmacokinetic-pharmaco-dynamic studies of tacrolimus are required. It would appear reasonable, based on current knowledge, to commence tacrolimus at similar doses as those used in younger patients. Maintenance dose requirements over the longer term may be lower in the elderly, but the increased variability in kinetics and the variety of factors that impact on dosage suggest that patient care needs to be based around more frequent monitoring in this age group.
Resumo:
The human cytochromes P450 are responsible for the clearance of similar to 90% of xenobiotics yet comparatively little is known about their electrochemistry. Here we report the first direct electrochemistry of P450s from the 2C subfamily; one of the major groups of enzymes from this family. Specifically, the proteins that we have examined are recombinant human P450s 2C9, 2C 18 and 2C 19 and reversible Fe-III/II couples are seen in the absence of dioxygen. Even in the presence of trace amounts of dioxygen, a pronounced cathodic response is seen which is assigned to catalytic reduction of the bound dioxygen ligand by the ferrous P450. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D-3, the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D-3 was greater in Cost and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D-3-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D-3 and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D-3 than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.
Resumo:
To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.
Resumo:
Branched chain fatty acids are substrates for cytochrome P450(BM3) (CYP102) from Bacillus megaterium; oxidation of C-15 and C-17 iso and anteiso fatty acids by P450(BM3) leads to the formation of hydroxylated products that possess high levels of regiochemical and stereochemical purity.
Resumo:
Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.