102 resultados para CYCLIC POLYMERS
Resumo:
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
Resumo:
This paper examines the development of starch-based plastics for use as biodegradable mulch film. A variety of starch-based polymers are blended with high performance biodegradable polyester polymers in order to determine the applicability of films to be processed on a film blowing line and to perform well in mulch film field trials. The process of material formulation, film blowing processing and scale-up and performance properties are highlighted for a successful material. Insights into future developments of starch-derived biodegradable polymers are given.
Resumo:
B3LYP/6-31G(d) calculations of structures, energies, and infrared spectra of several rearrangement products of (hetero)aromatic nitrenes and carbenes are reported. 3-Isoquinolylnitrene 36 ring closes to the azirine 37 prior to ring expansion to the potentially stable but unobserved seven-membered-ring carbodiimide 38 and diazacycloheptatrienylidene C-s-39S. A new, stable cycloheptatrienylidene, C-s-19S, is located on the naphthylcarbene energy surface. 4-Quinolylnitrene undergoes reaction via the azirine 50 in solution, but ring expansion to the stable seven-membered-ring ketenimine 47 under Ar matrix photolysis conditions. There is excellent agreement between calculated infrared spectra of 1,5-diazacyclohepta-1,2,4,6-tetraene 54 (obtained by photolysis of 4-pyridyl azide), 1-azacyclohepta-1,2,4,6-tetraene 5, 1-azacyclohepta-1,3,5,6-tetraene 55, and 1-azacyclohepta-1,3,4,6-tetraene 56 and the available experimental data.
Resumo:
The detection of viable myocardium has important implications for management, but use of stress echocardiography to detect this is subjective and requires exposure to dobutamine. We investigated whether cyclic variation (CV) of integrated backscatter (IB) from the apical views could provide a resting study for detection of contractile reserve (CR) and prediction of myocardial viability in 27 patients with chronic ischemic left ventricular (LV) dysfunction. Repeat echocardiography was performed after 6.7 +/- 3.8 months of follow-up; 14 patients underwent revascularization and 13 were treated medically. Using a standardized dobutamine echocardiography (DbE) protocol, images from three apical views were acquired at 80-120 frames/sec at rest and during stress. CR was identified if improvement of wall motion was observed at low dose (5 or 10 mug/kg/min) DbE. Myocardial viability was characterized by improvement at follow-up echocardiography in patients with revascularization. CVIB at rest and low dose dobutamine were assessed in 194 segments with resting asynergy (severe hypokinesis or akinesis), of which 88 (45%) were in patients who underwent revascularization. Of these, CVIB could be measured in 190 (98%) segments at rest and 185 (95%) at low dose dobutamine. Sixty-two (33%) segments had CR during low dose DbE and 50 (57%) segments showed wall-motion recovery (myocardial viability) at follow-up echocardiography. Segments with CR had significantly higher CVIB at rest (P < 0.001) and low dose dobutamine (P = 0.005) than segments without CR. Using optimal thresholds of CVIB (> 8.2 dB) at rest, the accuracy of CVIB for detecting CR was 70%. Compared with nonviable segments, viable segments had significantly higher CVIB at rest (P < 0.001) and low dose dobutamine (P < 0.001). Using optimal thresholds of CVIB (> 5.3 dB) at rest, the accuracy of CVIB for detecting myocardial viability was 85%, which was higher than that in conventional DbE (62%, P < 0.01). Thus, assessment of CV.TB from the apical views is a feasible and accurate tool for detecting CR and predicting myocardial viability in chronic LV dysfunction.
Resumo:
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.
Resumo:
Libraries of cyclic peptides are being synthesized using combinatorial chemistry for high throughput screening in the drug discovery process. This paper describes the min_syn_steps.cpp program (available at http://www.imb.uq.edu.au/groups/smythe/tran), which after inputting a list of cyclic peptides to be synthesized, removes cyclic redundant sequences and calculates synthetic strategies which minimize the synthetic steps as well as the reagent requirements. The synthetic steps and reagent requirements could be minimized by finding common subsets within the sequences for block synthesis. Since a brute-force approach to search for optimum synthetic strategies is impractically large, a subset-orientated approach is utilized here to limit the size of the search. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We produce families of irreducible cyclic presentations of the trivial group. These families comprehensively answer questions about such presentations asked by Dunwoody and by Edjvet, Hammond, and Thomas. Our theorems are purely theoretical, but their derivation is based on practical computations. We explain how we chose the computations and how we deduced the theorems.
Resumo:
Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides; we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the middle of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.
Resumo:
We report an efficient synthetic route to obtaining a stable analogue of 5,6-dihydroxyindole. These analogues can be used to build controlled composition model melanin biopolymers for solid state and spectroscopic studies of this important biomolecule.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Ar matrix photolysis of 1- and 2-naphthyl azides 3 and 4 at 313 nm initially affords the singlet naphthyl nitrenes, (1)1 and (1)2. Relaxation to the corresponding lower energy, persistent triplet nitrenes (3)1 and (3)2 competes with cyclization to the azirines 15 and 18, which can also be formed photochemically from the triplet nitrenes. On prolonged irradiation, the azirines can be converted to the seven-membered cyclic ketenimines 10 and 13, respectively, as described earlier by Dunkin and Thomson. However, instead of the o-quinoid ketenimines 16 and 19, which are the expected primary ring-opening products of azirines 15 and 18, respectively, we observed their novel bond-shift isomers 17 and 20, which may be formally regarded as cyclic nitrile ylides. The existence of such ylidic heterocumulenes has been predicted previously, but this work provides the first experimental observation of such species. The factors which are responsible for the special stability of the ylidic species 17 and 20 are discussed.