32 resultados para COSMOLOGICAL PERTURBATIONS
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
The stability of a steadily propagating planar premixed flame has been the subject of numerous studies since Darrieus and Landau showed that in their model flames are unstable to perturbations of any wavelength. Moreover, the instability was shown to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff of the instability. In addition to the Darrieus-Landau instability, which results from thermal expansion, analysis of the diffusional thermal model indicates that premixed flames may exhibit cellular and pulsating instabilities as a consequence of preferential diffusion. However, no previous theory captured all the instabilities including a high-wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified theory is proposed which, in appropriate limits and under appropriate assumptions, recovers all the relevant previous theories. It also includes additional new terms, not present in previous theories. In the present paper we consider the stability of a uniformly propagating planar flame as a solution of the unified model. The results are then compared to those based on the models of Darrieus-Landau, Sivashinsky and Matalon-Matkowsky. In particular, it is shown that the unified model is the only model to capture the Darrieus-Landau, cellular and pulsating instabilities including a high-wavenumber cutoff for each.