106 resultados para COLORECTAL CARCINOMAS
Resumo:
Trypsinogen (TRY), the precursor to the serine protease trypsin, is found in the pancreas and mediates digestive proteolysis in the small intestine. Differential display of cDNAs expressed by human colorectal tumor tissues compared with adjacent normal colonic mucosa identified an isoform of TRY (TRY2) up-regulated in colorectal cancers. Northern blot analysis of RNA isolated from a series of 28 malignant colon tumors and corresponding normal mucosa showed that TRY transcripts were up-regulated 2- to 33-fold in 29% of tumors. Further, TRY mRNA was expressed in 6 colorectal cancer cell lines, with highest levels detected in the metastatic tumor lines SW620 and HT29. Immunostaining for TRY protein expression showed intense immunoreactivity in the supranuclear cytoplasm of colon tumors in 16% of tissue specimens. To evaluate the relative contributions of 2 isoforms of TRY, TRY1 and TRY2, to total TRY mRNA expression, a semiquantitative multiplex RT-PCR assay was developed. TRY2 mRNA was detected in all 6 colorectal tumor cell lines, whereas TRY1 mRNA was expressed only in the metastatic tumor lines, showing that the high levels of TRY expression in the metastatic tumor lines are likely due to up-regulation of TRY1. Evaluation of TRY1 and TRY2 mRNA expression by multiplex RT-PCR in a series of 20 colon tumor tissues representative of the range of tumor progression showed that TRY2 mRNA was expressed much more commonly than TRY1 mRNA in normal mucosa (26% vs. 6%) as well as in primary tumor tissues (65% vs. 15%). These data demonstrate that TRY2 is the dominant TRY in colon tissue and suggest that up-regulation of TRY1 expression in colon tumors may be associated with a metastatic phenotype. (C) 2001 Wiley-Liss, Inc.
Resumo:
Purpose: To compare microsatellite instability (MSI) testing with immunohistochemical (IHC) detection of hMLH1 and hMSH2 in colorectal cancer. Patients and Methods: Colorectal cancers from 1, 144 patients were assessed for DNA mismatch repair deficiency by two methods: MSI testing and IHC detection of hMLH1 and hMSH2 gene products. High-frequency MSI (MSI-H) was defined as more than 30% instability of at least five markers; low-level MSI (MSI-L) was defined as 1% to 29% of loci unstable. Results: Of 1, 144 tumors tested, 818 showed intact expression of hMLH1 and hMSH2. Of these, 680 were microsatellite stable (MSS), 27 were MSI-H, and 111 were MSI-L. In all, 228 tumors showed absence of hMLH1 expression and 98 showed absence of hMSH2 expression: all were MSI-H. Conclusion: IHC in colorectal tumors for protein products hMLH1 and hMSH2 provides a rapid, cost-effective, sensitive (92.3%), and extremely specific (100%) method for screening for DNA mismatch repair defects. The predictive value of normal IHC for an MSS/MSI-L phenotype was 96.7%, and the predictive value of abnormal IHC was 100% for an MSI-H phenotype. Testing strategies must take into account acceptability of missing some cases of MSI-H tumors if only IHC is performed. (C) 2002 by American Society of Clinical Oncology.
Resumo:
Attempts to classify colorectal cancer into subtypes based upon molecular characterisation are overshadowed by the classical stepwise model in which the adenoma-carcinoma sequence serves as the morphological counterpart. Clarity is achieved when cancers showing DNA microsatellite instability (MSI) are distinguished as sporadic MSI-low (MSI-L), sporadic MSI-high (MSI-H) and hereditary non-polyposis colorectal cancer (HNPCC). Divergence of the 'methylator' pathway into MSI-L and MSI-H is at least partly determined by the respective silencing of MGMT and hMLH1. Multiple differences can be demonstrated between sporadic and familial (HNPCC) MSI-H colorectal cancer with respect to early mechanisms, evolution, molecular characterisation, demographics and morphology. By acknowledging the existence of multiple pathways, rapid advances in the fields of basic and translational research will occur and this will lead to improved strategies for the prevention, early detection and treatment of colorectal cancer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This review compiles evidence for an alternative to the classical adenoma-carcinoma sequence in the evolution of colorectal cancer. It is suggested that between 30 and 50% of colorectal cancers are not initiated by mutation of the tumor suppressor gene APC, but through the epigenetic silencing of genes implicated in the control of differentiation, cell cycle control and DNA repair proficiency. The precursor polyps are often characterized by a serrated architecture, and include hyperplastic polyps, admixed polyps and serrated adenomas. The alternative pathway is heterogeneous and may culminate in cancers showing low or high level DNA microsatellite instability (MSI-L and MSI-H, respectively), and in cancers that are microsatellite stable (MSS). Cancers showing DNA MSI may be characterized by an accelerated evolution. Cancers in hereditary non-polyposis colorectal cancer show features of both classical (adenoma and APC mutation) and alternative pathways (rapid evolution, MSI-H and lack of chromosomal instability). (C) 2001 Blackwell Science Asia Pty Ltd.
Resumo:
The past decade has seen the emergence of new pathways in the development of colorectal cancer. There is now clear evidence that subsets of these tumours do not show chromosomal instability and do not follow the suppressor pathway. Instead, about 15% of colorectal cancers are characterised by microsatellite instability (MSI). This feature arises through defective DNA mismatch repair, which is related either to a germline mutation (as in hereditary non-polyposis colorectal carcinoma) or to failure to express a mismatch-repair gene. CpG-island methylation has been linked to sporadic cancers with a high frequency of MSI. This type of methylation leads to loss of gene expression when it occurs in the promoter region of a gene. Tumours may have high or low type C (cancer-related) CpG-island methylation. When methylation affects hMLH1 (mismatch repair gene), the resultant cancer has high MSI.
Resumo:
An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a serrated pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop Into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.
Resumo:
Colorectal cancer (CRC) has traditionally been classified into two groups: microsatellite stable/low-level instability (MSS/MSI-L) and high-level MSI (MSI-H) groups on the basis of multiple molecular and clinicopathologic criteria. Using methylated in tumor (MINT) markers 1, 2,12, and 31, we stratified 77 primary CRCs into three groups: MINT++ (>2), MINT+ (1-2), and MINT- (0 markers methylated). The MSS/MSI-L/ MINT++ group was indistinguishable from the MSI-H/MINT++ group with respect to methylation of p16(INK4a), p14(ARF), and RIZ1, and multiple morphological features. The only significant difference between MSI-H and non-MSI-H MINT++ cancers was the higher frequency of K-ras mutation (P < 0.004) and lower frequency of hMLH1 methylation (P < 0.001) in the latter. These data demonstrate that the separation of CRC into two nonoverlapping groups (MSI-H versus MSS/MSI-L) is a misleading oversimplification.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-l/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Background and Aim: Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. Methods: One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Results: Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P< 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. Conclusions: The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. (C) 2002 Blackwell Publishing Asia Pty Ltd.
Resumo:
Chromosome 9p21, a locus comprising the tumor suppressor genes (TSG) p16(INK4) (a) and p14(ARF) , is a common region of loss of heterozygosity (LOH) in hepatocellular carcinoma (HCC). p14(ARF) shares exon 2 with p16 in a different reading frame. p14 binds to MDM2 resulting in a stabilization of functional p53 . This study examined the roles of p14, p16 and p53 in hepatocarcinogenesis, in 37 Australian and 24 South African patients. LOH at 9p21 and 17p13.1, p14 and p16 mutation analysis, p14 and p16 promoter methylation and p14, p16 and p53 protein expression was examined. LOH at 9p21 was detected more frequently in South African HCC (P = 0.04). Comparable rates of p53 LOH were observed in Australian and South African HCC (10/22, 45%vs 13/22, 59%, respectively). Hypermethylation of the p14 promoter was more prevalent in Australian HCC than in South African HCC (17/37, 46%vs 7/24, 29%, respectively). In Australian HCC the prevalence of p14 methylation increased with age (P = 0.03). p16 promoter methylation was observed in 12/37 (32%) and 6/24 (25%) in Australian and South African HCC, respectively. Loss of p16 protein expression was detected in 14/36 Australian HCC whereas p53 protein expression was detected in 9/36. Significantly, a reciprocal relationship between 9p21 LOH and p14 promoter hypermethylation was observed (P less than or equal to0.05 ). No significant association between p14 and p53 was seen in this study. The reciprocal relationship identified indicates different pathways of tumorigenesis and likely reflects different etiologies of HCC in the two countries. (C) 2002 Blackwell Science Asia Pty Ltd.
Resumo:
1. Sulphotransferases are a superfamily of enzymes involved in both detoxification and bioactivation of endogenous and exogenous compounds. The arylsulphotransferase SULT1A1 has been implicated in a decreased activity and thermostability when the wild-type arginine at position 213 of the coding sequence is substituted by a histidine. SULT1A1 is the isoform primarily associated with the conversion of dietary N -OH arylamines to DNA binding adducts and is therefore of interest to determine whether this polymorphism is linked to colorectal cancer. 2. Genotyping, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, was performed using DNA samples of healthy control subjects (n = 402) and patients with histologically proven colorectal cancer (n = 383). Both control and test populations possessed similar frequencies for the mutant allele (32.1 and 31%, respectively; P = 0.935). Results were not altered when age and gender were considered as potential confounders in a logistic regression analysis. 3. Examination of the sulphonating ability of the two allozymes with respect to the substrates p -nitrophenol and paracetamol showed that the affinity and rate of sulphonation was unaffected by substitution of arginine to histidine at position 213 of the amino acid sequence. 4. From this study, we conclude that the SULT1A1 R213H polymorphism is not linked with colorectal cancer in this elderly Australian population.
Resumo:
Objectives: To describe what is known of quality of life for colorectal cancer patients, to review what has been done in the Australian setting and to identify emerging directions for future research to address current gaps in knowledge. Method: A literature search (using Medline, PsychInfo, CINAHL and Sociological Abstracts) was conducted and 41 articles identified for review. Results: Three key areas relating to quality of life in colorectal cancer patients emerged from the literature review: the definition and measurement of quality of life; predictors of quality of life; and the relationship of quality of life to survival. Results of existing studies are inconsistent in relation to quality of life over time and its relationship to survival. Small sample sizes and methodological limitations make interpretation difficult. Conclusions: There is a need for large-scale, longitudinal, population-based studies describing the quality of life experienced by colorectal cancer patients and its determinants. Measurement and simultaneous adjustment for potential confounding factors would productively advance knowledge in this area, as would an analysis of the economic cost of morbidity to the community and an assessment of the cost effectiveness of proposed interventions. Implications: As the Australian population ages, the prevalence of colorectal cancer within the community will increase. This burden of disease presents as a priority area for public health research. An improved understanding of quality of life and its predictors will inform the development and design of supportive interventions for those affected by the disease.
Resumo:
Background and aim: E-cadherin binds to beta-catenin to form the cadherin/catenin complex required for strong cell adhesion. Inactivation of this complex in tumors facilitates invasion into surrounding tissues. Alterations of both proteins have been reported in hepatocellular carcinomas (HCC). However, the interactions between E-cadherin and beta-catenin in HCC from different geographical groups have not been explored. The aim of the present study was to assess the role of E-cadherin and beta-catenin in Australian and South African patients with HCC. Methods: DNA was extracted from malignant and non-malignant liver tissue from 37 Australian and 24 South African patients, and from histologically normal liver from 20 transplant donors. Chromosomal instability at 16q22, promoter methylation at E-cadherin, beta-catenin mutations and E-cadherin and beta-catenin protein expression was assessed using loss of heterozygosity, methylation-specific polymerase chain reaction, denaturing high-performance liquid chromatography and immunohistochemistry, respectively. Results: Loss of heterozygosity at 16q22 was prevalent in South African HCC patients (50%vs 11%; P < 0.05, chi(2)). In contrast, E-cadherin promoter hypermethylation was common in Australian cases in both malignant (30%vs 13%; P = not significant, chi(2)) and non-malignant liver (57%vs 8%, respectively, P < 0.001, chi(2)). Methylation of non-malignant liver was more likely to be detected in patients over the age of 50 years (P < 0.001, chi(2)), the overall mean age for our cohort of patients. Only one beta-catenin mutation was identified. E-cadherin protein expression was reduced in one HCC, while abnormalities in protein expression were absent in beta-catenin. Conclusion: Contrary to previous observations in HCC from other countries, neither E-cadherin nor beta-catenin appears to play a role in hepatocarcinogenesis in Australian and South African patients with HCC. (C) 2004 Blackwell Publishing Asia Pty Ltd.
Resumo:
Cell surface mucins are complex glycoproteins expressed on the apical membrane surface of mucosal epithelial cells. In malignant epithelial cells they are thought to influence cell adhesion, and are clinical targets for tumor immunotherapy and serum tumor marker assays. We have compared expression of MUC1, MUC3, MUC4, MUC11, MUC12 and MUC13 mRNA in epithelial cancers and/or cell lines with non-malignant tissues. In non-malignant tissues, MUC3, 4, 11, 12 and 13 were expressed at highest levels in gastrointestinal tissues, whereas MUC1 was more widely distributed. Significant down-regulation of the MUC4, MUC12 and MUC13 genes was observed in colonic cancers compared with normal tissue, whereas MUC1 was upregulated. In rectal cancers, levels of all six mucin genes were not significantly different to those in normal rectal tissues. Both MUC1 and MUC4 were down-regulated in gastric cancers, whereas cancer and normal tissue levels were similar for MUC3, 11, 12 and 13. In esophageal cancers there was a general trend toward higher levels than in normal tissue for MUC1, 3, 12 and 13. In ovarian cancers MUC1 levels were very high, whereas only low levels of all other mucins were observed. We also report expression in renal cell carcinomas, bladder carcinomas and breast cancer cell lines. The reported expression profiles of the cell surface mucin gene family will help direct biological and clinical studies of these molecules in mucosal biology, and in malignant and inflammatory diseases of epithelial tissues.