36 resultados para Burrowing owl
Resumo:
Typically, cognitive abilities of humans have been attributed to their greatly expanded cortical mantle, granular prefrontal cortex (gPFC) in particular. Recently we have demonstrated systematic differences in microstructure of gPFC in different species. Specifically, pyramidal cells in adult human gPFC are considerably more spinous than those in the gPFC of the macaque monkey, which are more spinous than those in the gPFC of marmoset and owl monkeys. As most cortical dendritic spines receive at least one excitatory input, pyramidal cells in these different species putatively receive different numbers of inputs. These differences in the gPFC pyramidal cell phenotype may be of fundamental importance in determining the functional characteristics of prefrontal circuitry and hence the cognitive styles of the different species. However, it remains unknown as to why the gPFC pyramidal cell phenotype differs between species. Differences could be attributed to, among other things, brain size, relative size of gPFC, or the lineage to which the species belong. Here we investigated pyramidal cells in the dorsolateral gPFC of the prosimian galago to extend the basis for comparison. We found these cells to be less spinous than those in human, macaque, and marmoset. (c) 2005 Wiley-Liss, Inc.
Resumo:
Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
We tested current hypotheses on the functional organization of the third visual complex, a particularly controversial region of the primate extrastriate cortex. In anatomical experiments, injections of retrograde tracers were placed in the dorsal cortex immediately rostral to the second visual area (V2) of New World monkeys (Callithrix jacchus), revealing the topography of interconnections between the third tier cortex and the primary visual area (V1). The data indicate the presence of a dorsomedial area (DM), which represents the entire upper and lower quadrants of the visual field, and which receives strong, topographically organized projections from the superficial layers of V1. The visuotopic organization and boundaries of DM were confirmed by electrophysiological recordings in the same animals and by architectural characteristics which were distinct from those found in ventral extrastriate cortex rostral to V2. There was no electrophysiological or histological evidence for a transitional area between V2 and DM. In particular, the central representation of the upper quadrant in DM was directly adjacent to the representation of the horizontal meridian that marks the rostral border of V2. The present results argue in favor of the hypothesis that the third visual complex in New World monkeys contains different areas in its dorsal and ventral components: area DM, near the dorsal midline, and a homolog of area 19 of other mammals, located more lateral and ventrally. The characteristics of DM suggest that it may correspond to visual area 6 (V6) of Old World monkeys. (C) 2005 Wiley-Liss, Inc.
Resumo:
The thelastomatoid fauna of two species of wood-burrowing cockroach (Blattodea, Blaberidae), Panesthia cribrata and Panesthia tryoni tryoni, from Lamington National Park, Australia, is described. The following eight new species and three new genera of thelastomatid are proposed: Bilobostoma exerovulva n. g., n. sp.; Cordonicola gibsoni n. sp.; Coronostoma australiae n. sp.; Desmicola ornata n. sp.; Hammerschmidtiella hochi n. sp.; Malaspinanema goateri n. g., n. sp.; Travassosinema jaidenae n. sp.; and Tsuganema cribratum n. g., n. sp. Additional data are given for Blattophila sphaerolaima and Leidynemella fusiformis. Of the 11 species reported, nine were found in P. cribrata and ten in P. tryoni tryoni. Such levels of thelastomatoid species richnessness in single host species are exceptional. Only the mole cricket, Gryllotalpa africana (23), and the domestic cockroach, Periplaneta americana (20), have higher reported richness. Three species, T jaidenae, C. australiae and D. ornata, were found either exclusively or significantly more prevalently in P tryoni tryoni than in R cribrata. Species of Travassosinema, Coronostoma and Desmicola have been found previously only in millipedes (Diplopoda), a fact that suggests that there is a greater degree of niche overlap between R tryoni tryoni and millipedes than for R cribrata.
Resumo:
Long (6- to 9-mo) bouts of estivation in green-striped burrowing frogs lead to 28% atrophy of cruralis oxidative fibers (P < 0.05) and some impairment of in vitro gastrocnemius endurance (P < 0.05) but no significant deficit in maximal twitch force production. These data suggest the preferential atrophy of oxidative fibers at a rate slower than, but comparable to, laboratory disuse models. We tested the hypothesis that the frog limits atrophy by modulating oxidative stress. We assayed various proteins at the transcript level and verified these results for antioxidant enzymes at the biochemical level. Transcript data for NADH ubiquinone oxidoreductase subunit 1 (71% downregulated, P < 0.05) and ATP synthase (67% downregulated, P < 0.05) are consistent with mitochondrial quiescence and reduced oxidant production. Meanwhile, uncoupling protein type 2 transcription (P < 0.31), which is thought to reduce mitochondrial leakage of reactive oxygen species, was maintained. Total antioxidant defense of water-soluble (22.3 +/- 1.7 and 23.8 +/- 1.5 mu M/mu g total protein in control and estivator, respectively, P = 0.53) and membrane-bound proteins (31.5 +/- 1.9 and 42.1 +/- 7.3 mu M/mu g total protein in control and estivator, respectively, P = 0.18) was maintained, equivalent to a bolstering of defense relative to oxygen insult. This probably decelerates muscle atrophy by preventing accumulation of oxidative damage in static protein reserves. Transcripts of the mitochondrially encoded antioxidant superoxide dismutase type 2 ( 67% downregulated, P < 0.05) paralleled mitochondrial activity, whereas nuclear-encoded catalase and glutathione peroxidase were maintained at control values (P = 0.42 and P = 0.231), suggesting a dissonance between mitochondrial and nuclear antioxidant expression. Pyruvate dehydrogenase kinase 4 transcription was fourfold lower in estivators (P = 0.11), implying that, in contrast to mammalian hibernators, this enzyme does not drive the combustion of lipids that helps spare hypometabolic muscle.
Resumo:
Short-beaked echidnas have an impressive ability to submerge completely into soil or sand and remain there, cryptic, for long periods. This poses questions about how they manage their respiration, cut off from a free flow of gases. We measured the gradient in oxygen partial pressure (P-O2) away from the snouts of buried echidnas and oxygen consumption (V-O2) in five individuals under similar conditions, in two substrates with different air-filled porosities (f(a)). A theoretical diffusion model indicated that diffusion alone was insufficient to account for the flux of oxygen required to meet measured rates of V-O2. However, it was noticed that echidnas often showed periodic movements of the anterior part of the body, as if such movements were a deliberate effort to flush the tidal air space surrounding their nostrils. These 'flushing movements' were subsequently found to temporarily increase the levels of interstitial oxygen in the soil around the head region. Flushing movements were more frequent while V-O2 was higher during the burrowing process, and also in substrate with lower fa. We conclude that oxygen supply to buried echidnas is maintained by diffusion through the soil augmented by periodic flushing movements, which ventilate the tidal airspace that surrounds the nostrils.