32 resultados para Bridges -- Contests
Resumo:
New mono- and bis-chelated zinc(II) and cadmium(II) complexes of formula, [M(dpksbz)NCS] (dpksbz = anionic form of the di-2-pyridylketone Schiff base of S-benzyldithiocarbazate) and [M(dpksbz)(2)] (M = Zn-II, Cd-II) have been prepared and characterized. The structure of the bis-ligand complex, [Zn(dpksbZ)(2)] has been determined by X-ray diffraction. The complex has a distorted octahedral geometry in which the ligands are coordinated to the zinc(II) ion as uninegatively charged tridentate chelates via the thiolate sulfur atoms, the azomethine nitrogen atoms and the pyridine nitrogen atoms. The distortion from a regular octahedral geometry is attributed to the restricted bite angles of the Schiff base ligands. X-ray structural analysis shows that the [Cd(dpksbz)NCS](2) complex is a centrosymmetric dimer in which each of the cadmium(II) ions adopts a five-coordinate, approximately square-pyramidal configuration with the Schiff base acting as a tetradentate chelating agent coordinating a cadmium(II) ion via one of the pyridine nitrogen atoms, the azomethine nitrogen atom and the thiolate sulfur atom; the second pyridine nitrogen atom is coordinated to the other cadmium(II) ion of the dimer. The fifth coordination position around each cadmium(II) is occupied by an N-bonded thiocyanate ligand. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.