181 resultados para Brain Development


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured the effects of ethanol on glutamate receptor levels in the hippocampus of neonatal Wistar rats using a vapor chamber model. Two control groups were used; a normal suckle group and a maternal separation group. Levels of NMDA receptors were not significantly altered in ethanol-treated animals compared to the normal suckle control group, as shown by [H-3]MK-801 binding and Western blot analysis. However, MK-801 binding and NR1 subunit immunoreactivity were greatly reduced in the hippocampus of separation control animals. Neither ethanol treatment nor maternal separation altered levels of GluR1 or GluR2(4). These results have serious implications for the importance of maternal contact for normal brain development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The association between vitamin D levels and skeletal growth has long been recognized. However, exposure to low levels of vitamin D during early life is also known to alter brain development, and is a candidate risk factor for schizophrenia. This study examines the association between four polymorphisms in the vitamin D receptor (VDR) and 1) risk of schizophrenia, and 2) three anthropometric variables (height, head size, and head shape). Four single-nucleotide polymorphisms (SNPs; rs10735810/FokI, rsl544410/BsmI, rs7975232/ApaI, and rs731236/TaqI) in the VDR gene were genotyped in 179 individuals with schizophrenia and 189 healthy controls. No significant associations were detected between any of the four VDR SNPs and risk of schizophrenia. Patients were slightly but significantly shorter compared to controls. Of the four SNPs, only rs10735810/FokI was associated with any of the anthropometric measures: the M4 isoform of this SNP was significantly associated with larger head size (P = 0.002). In light of the evidence demonstrating a role for vitamin D during brain development, the association between polymorphisms in VDR and brain development warrants closer scrutiny.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient prenatal vitamin D deficiency produces hyperlocomotion in the adult rat. The aim of this study was to examine the effects of acute restraint on the behaviour of DVD and control rats in the open field. Rats were conceived and born to developmentally vitamin D (DVD) deficient or replete (control) dams and, at 8 weeks of age, were monitored for 30 min in an open field using automated video tracking software. Half of the rats were restrained within a towel for 5 min immediately before the open field test. The remainder received minimal handling prior to the open field test. Repeating previous findings, DVD deficient animals had enhanced locomotion during the first 10 min of the open field test compared to control rats. By contrast, there were no differences in locomotor activity after acute restraint stress. The time rats spent in the corners and side of the open field was affected by prenatal diet. DVD rats spent less time in the corners and more time in the side than control rats across the whole 30 min test. This difference was not seen in rats with acute restraint stress. The time spent in the centre was not altered by prenatal diet or acute restraint. Thus, transient prenatal vitamin D deficiency induces a transient spontaneous hyperlocomotion in adulthood that is modulated by acute restraint stress. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Self-regulation Skills Interview (SRSI) is a clinical tool designed to measure a range of metacognitive skills essential for rehabilitation planning, monitoring an individual's progress, and evaluating the outcome of treatment interventions. The results of the present study indicated that the SRSI has sound interrater reliability and test-retest reliability. A principle components analysis revealed three SRSI factors: Awareness, Readiness to Change, and Strategy Behavior. A comparison between a group of 61 participants with acquired brain injury (ABI) and a group of 43 non-brain-injured participants indicated that the participants with ABI had significantly lower levels of Awareness and Strategy Behavior, but that level of Readiness to Change was not significantly different between the two groups. The significant relationship observed between the SRSI factors and measures of neuropsychological functioning confirmed the concurrent validity of the scale and supports the value of the SRSI for post-acute assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Impaired self-awareness may affect clients' emotional status, engagement in rehabilitation and community reintegration following traumatic brain injury (TBI). The study aimed to investigate the relationship between self-awareness, emotional distress and community integration in adults with TBI during the transition from hospital to the community. Thirty-four rehabilitation clients with TBI were assessed in the week before and 2 months after discharge home. Measures of self-awareness and emotional functioning were administered predischarge and repeated at follow-up along with a measure of community integration. Nonparametric tests were used to compare levels of self-awareness and emotional distress pre- and postdischarge, their interrelationships and association with community integration. Self-awareness significantly increased following discharge, and a trend towards increased depression was found. There were no consistent relationships found between level of self-awareness, emotional functioning, and community integration. The development of self-awareness in the immediate postdischarge phase suggests this is an important time for clinical interventions targeting compensation strategies and adjustment to disability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of the extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloramphenicol, an in vitro inhibitor of the glucuronidation of morphine to its putative antianalgesic metabolite, morphine-3-glucuronide (M3G), was coadministered with morphine in adult male Sprague-Dawley rats to determine whether it inhibited the in vivo metabolism of morphine to M3G, thereby enhancing morphine antinociception and/or delaying the development of antinociceptive tolerance. Parenteral chloramphenicol was given acutely (3-h studies) or chronically (48-h studies). Morphine was administered by the i.v. or i.c.v. route. Control rats received chloramphenicol and/or vehicle. Antinociception was quantified using the hotplate latency test. Coadministration of chloramphenicol with i.v. but not i.cv. morphine increased the extent and duration of morphine antinociception by approximate to 5.5-fold relative to rats that received i.v. morphine alone. Thus, the mechanism through which chloramphenicol enhances i.v. morphine antinociception in the rat does not directly involve supraspinal opioid receptors. Acutely, parenteral coadministration of chloramphenicol and morphine resulted in an approximate to 75% increase in the mean area under the serum morphine concentration-time curve but for chronic dosing there was no significant change in this curve, indicating that factors other than morphine concentrations contribute significantly to antinociception. Antinociceptive tolerance to morphine developed more slowly in rats coadministered chloramphenicol, consistent with our proposal that in vivo inhibition of M3G formation would result in increased antinociception and delayed development of tolerance. However, our data also indicate that chloramphenicol inhibited the biliary secretion of M3G. Whether chloramphenicol altered the passage of M3G and morphine across the blood-brain barrier remains to be investigated.