89 resultados para Binary Optical Element
Resumo:
We use the finite element method to solve the coupled problem between convective pore-fluid flow, heat transfer and mineralization in layered hydrothermal systems with upward throughflow. In particular, we present the improved rock alteration index (IRAI) concept for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in the systems. To validate the numerical method used in the computation, analytical solutions to a benchmark problem have been derived. After the numerical method is validated, it is used to investigate the pattern of pore-fluid Aom, the distribution of temperature and the mineralization pattern of gold minerals in a layered hydrothermal system with upward throughflow. The related numerical results have demonstrated that the present concept of IRAI is useful and applicable for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in hydrothermal systems. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to soh,e any new, kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially, for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid-saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore-fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.
Resumo:
We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.
Resumo:
Using the exact Bethe ansatz solution of the Hubbard model and Luttinger liquid theory, we investigate the density profiles and collective modes of one-dimensional ultracold fermions confined in an optical lattice with a harmonic trapping potential. We determine a generic phase diagram in terms of a characteristic filling factor and a dimensionless coupling constant. The collective oscillations of the atomic mass density, a technique that is commonly used in experiments, provide a signature of the quantum phase transition from the metallic phase to the Mott-insulator phase. A detailed experimental implementation is proposed.
Resumo:
We examine a problem with n players each facing the same binary choice. One choice is superior to the other. The simple assumption of competition - that an individual's payoff falls with a rise in the number of players making the same choice, guarantees the existence of a unique symmetric equilibrium (involving mixed strategies). As n increases, there are two opposing effects. First, events in the middle of the distribution - where a player finds itself having made the same choice as many others - become more likely, but the payoffs in these events fall. In opposition, events in the tails of the distribution - where a player finds itself having made the same choice as few others - become less likely, but the payoffs in these events remain high. We provide a sufficient condition (strong competition) under which an increase in the number of players leads to a reduction in the equilibrium probability that the superior choice is made.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
In this paper we study the nondegenerate optical parametric oscillator with injected signal, both analytically and numerically. We develop a perturbation approach which allows us to find approximate analytical solutions, starting from the full equations of motion in the positive-P representation. We demonstrate the regimes of validity of our approximations via comparison with the full stochastic results. We find that, with reasonably low levels of injected signal, the system allows for demonstrations of quantum entanglement and the Einstein-Podolsky-Rosen paradox. In contrast to the normal optical parametric oscillator operating below threshold, these features are demonstrated with relatively intense fields.
Resumo:
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrodinger equation. (C) 1997 Optical Society of America.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.