44 resultados para Bifurcation Diagrams
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Over 1000 marine and terrestrial pollen diagrams and Some hundreds of vertebrate faunal sequences have been studied in the Austral-Asian region bisected by the PEPII transect, from the Russian arctic extending south through east Asia, Indochina, southern Asia, insular Southeast Asia (Sunda), Melanesia, Australasia (Sahul) and the western south Pacific. The majority of these records are Holocene but sufficient data exist to allow the reconstruction of the changing biomes over at least the past 200,000 years. The PEPII transect is free of the effects of large northern ice caps yet exhibits vegetational change in glacial cycles of a similar scale to North America. Major processes that can be discerned are the response of tropical forests in both lowlands and uplands to glacial cycles, the expansion of humid vegetation at the Pleistocene-Holocene transition and the change in faunal and vegetational controls as humans occupy the region. There is evidence for major changes in the intensity of monsoon and El Nino-Southern oscillation variability both on glacial-interglacial and longer time scales with much of the region experiencing a long-term trend towards more variable and/or drier climatic conditions. Temperature variation is most marked in high latitudes and high altitudes with precipitation providing the major climate control in lower latitude, lowland areas. At least some boundary shifts may be the response of vegetation to changing CO2 levels in the atmosphere. Numerous questions of detail remain, however, and current resolution is too coarse to examine the degree of synchroneity of millennial scale change along the transect. (C) 2003 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
A number of binary Cu-X alloys (X = Fe, Cr, Si and Al) with alloying elements up to approximate to 12 at % for Fe and Cr, and = 20 at% for Al and Si were cast into thin ribbons (30-50 mu m thickness) by chill block melt spinning. The structural state of the as-cast ribbons was determined by X-ray diffraction (XRD) and microstructures of the quenched alloys were compared with the ingot equivalent, It was possible to achieve solid solution and fine dispersion of secondary phase beyond XRD detection up to approximate to 8 at% solute for Fe and Cr, which is beyond the expected concentration limits from equilibrium phase diagrams. The effects of alloying on resistivity and microhardness are also presented.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
At the core of the analysis task in the development process is information systems requirements modelling, Modelling of requirements has been occurring for many years and the techniques used have progressed from flowcharting through data flow diagrams and entity-relationship diagrams to object-oriented schemas today. Unfortunately, researchers have been able to give little theoretical guidance only to practitioners on which techniques to use and when. In an attempt to address this situation, Wand and Weber have developed a series of models based on the ontological theory of Mario Bunge-the Bunge-Wand-Weber (BWW) models. Two particular criticisms of the models have persisted however-the understandability of the constructs in the BWW models and the difficulty in applying the models to a modelling technique. This paper addresses these issues by presenting a meta model of the BWW constructs using a meta language that is familiar to many IS professionals, more specific than plain English text, but easier to understand than the set-theoretic language of the original BWW models. Such a meta model also facilitates the application of the BWW theory to other modelling techniques that have similar meta models defined. Moreover, this approach supports the identification of patterns of constructs that might be common across meta models for modelling techniques. Such findings are useful in extending and refining the BWW theory. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We model the behavior of an ion trap with all ions driven simultaneously and coupled collectively to a heat bath. The equations for this system are similar to the irreversible dynamics of a collective angular momentum system known as the Dicke model. We show how the steady state of the ion trap as a dissipative many-body system driven far from equilibrium can exhibit quantum entanglement. We calculate the entanglement of this steady state for two ions in the trap and in the case of more than two ions we calculate the entanglement between two ions by tracing over all the other ions. The entanglement in the steady state is a maximum for the parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative quantum systems.
Resumo:
Phase relations and the liquidus surface in the system "MnO"-Al2O3-SiO2 at manganese-rich alloy saturation have been investigated in the temperature range from 1373 to 1773 K. This system contains the primary-phase fields of tridymite and cristobalite (SiO2); mullite (3Al(2)O(3).2SiO(2)); corundum (Al2O3); galaxite (MnO.Al2O3); manganosite (MnO); tephroite (2MnO.SiO2); rhodonite (MnO.SiO2); spessartine (3MnO.Al2O3.SiO2); and the compound MnO.Al2O3.2SiO(2).
Resumo:
Phase-equilibrium data and the liquidus for the system. "MnO"-CaO-(Al2O3-SiO2) at a manganese-rich alloy saturation have been determined in the temperature range from 1423 to 1723 K. The results are presented in the form of a pseudoternary section "MnO"-CaO-(Al2O3 + SiO2) with an Al2O3/SiO2 weight ratio of 0.41. The following primary phases are present in the range of conditions investigated:, 3Al(2)O(3).2SiO(2); SiO2; MnO.Al2O3-2SiO(2); (Mn,Ca)O.SiO2; 2(Mn,Ca)O.SiO2; MnO.Al2O3; (Mn,Ca)O; alpha-2CaO.SiO2; alpha'-2CaO.SiO2; 2CaO.Al2O3.SiO2; CaO.SiO2, and CaO.Al2O3.2SiO(2). The presence of alumina in this system is shown to have a significant effect on the liquidus compared to the system "MnO"-CaO-SiO2, leading to, the stabilization of the anorthite and gehlenite phases.
Resumo:
This study evaluated the suitability of written materials for stroke survivors and their carers. Twenty stroke survivors and 14 carers were interviewed about the stroke information they had received and their perceptions of the content and presentation of materials of increasing reading difficulty. The mean readability level of materials (grade 9) was higher than participants’ mean reading ability (grade 7–8). Satisfaction with materials decreased as the content became more difficult to read. Seventy-five percent reported that their information needs were not met in hospital. More stroke survivors with aphasia wanted support from health professionals to read and understand written information, and identified simple language, large font size, color, and diagrams to complement the text as being important features of written materials. Simple materials that meet clients’ information needs and design preferences may optimally inform them about stroke.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.