56 resultados para Beta Cell Function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activity of the TRACP promoter has been investigated as a model of gene regulation in osteoclasts. The murine TRACP gene promoter contains potential binding sites for a number of transcription factors in particular, candidate sites for the Ets factor PU.1 and for the microphthalmia transcription factor (MiTF). These are of relevance to osteoclast biology because the PU.1 knockout mouse has an osteopetrotic phenotype, and MiTF, when mutated in the mi/mi mouse, also results in osteopetrosis. The binding sites for both of these factors have been identified, and they have been determined to be functional in regulating TRACP expression. A novel assay system using the highly osteoclastogenic RAW/C4 subclone of the murine macrophage cell line RAW264.7 was used to perform gene expression experiments on macrophage and osteoclast cell backgrounds. We have shown that TRACP expression is a target for regulation by the macrophage/osteoclast transcription factor PU.1 and the osteoclast commitment factor MiTF and that these factors act synergistically in regulating this promoter. This directly links two controlling factors of osteoclast differentiation to the expression of an effector of cell function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2(-/-) anabolic pathways in modulating bone formation. Introduction: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient oblob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. Materials and Methods: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2(-/-) oblob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2(-/-) mice. Cancellous bone volume and bone cell function were assessed. Results: Osteoblast activity was comparably elevated in oblob, Y2(-/-), and Y2(-/-) oblob mice. However, greater bone resorption in oblob and Y2(-/-) oblob mice reduced cancellous bone volume compared with Y2(-/-). Both wildtype and Y2(-/-) AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2(-/-) AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. Conclusions: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2(-/-) pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several activating mutations have recently been described in the common beta subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (h beta c), Two of these, FI Delta and 1374N, result, respectively, in a 37-amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to-glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hpc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF, We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hpc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated h beta c mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated h beta c mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (C) 2000 by The American Society of Hematology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabdotids elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the beta A4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (h beta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of h beta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of h beta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states. (C) 2000 International Society for Experimental Hematology. Published by Elsevier Science Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.