68 resultados para Bcl-w mRNA
Resumo:
A line of FVB (H-2(q)) mice transgenic for the E6/E7 open reading frames of Human Papillomavirus type 16 driven from the alpha-A crystallin promoter expresses E7 mRNA in lens and skin epithelium. E7 protein is detectable in adult skin, coinciding with the development or inflammatory skin disease, which progresses to papillomata and squamous carcinomata in some mice. By examining the outcome of parenteral immunization with E7 protein, we sought to determine whether endogenous expression of E7 in skin had induced a preexisting immune outcome, i.e., specific immunity or tolerance, or whether the mice remain naive (''ignorant'') to E7. Our data show that the antibody response to defined E7 B-epitopes, the proliferative response to Th epitopes, and the delayed-type hypersensitivity (DTH) response to whole E7 did not differ between groups or young and old E6/E7 transgenic mice (likely having different degrees of lifetime exposure to E7 protein) or between E6/E7-transgenic and nontransgenic parental strain control mice. Although an E7-specific CTL response could not be induced in the H-2(q) background of these mice, incorporation of a D-b allele into the genome allowed comparison of D-b-restricted CTL responses in E6/E7 transgenic and nontransgenic mice. Experiments indicated that the E7-immunization-induced CTL response did not differ significantly between E6/E7 transgenic and nontransgenic mice. We interpret these results to indicate that in spite of expression of E7 protein in adult skin, E6/E7 transgenic mice remain immunologically naive (ignorant) of E7 epitopes presented by immunization. (C) 1997 Academic Press.
Resumo:
Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels.
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.
Resumo:
There are at present disparate published results with regard to the relevance of the Bcl-2 gene family, levels of apoptosis, and cell proliferation in the development and progression of renal cell carcinoma (RCC). The present study v analyses the interrelationship between the expression of representatives of the anti-apoptotic (Bcl-2, Bcl-X-L) or pro-apoptotic (Bax) Bcl-2 proteins, incidence of apoptosis, and mitosis in a selected small group of 22 graded RCCs that had paired normal renal tissue, or non-neoplastic tissue in the renal biopsy specimen. The cases were chosen to determine the feasibility of measuring these parameters as potential surrogate markers of progression or treatment failure of the cancers. The results showed that in approximately 50% of the RCCs, where Bcl-2 and/or Bcl-X-L expression was high, apoptosis it-as not detected, and when expression of these proteins was low or not found, increased levels of apoptosis were seen. In most of the remaining 50% of samples, high levels of Bcl-X-L but not Bcl-2 were negatively correlated with low levels of apoptosis (Bcl-X-L: r = -0.437, P = 0.07 and Bcl-2: r = + 0.560, P = 0.02). For the same group of samples, high Bax expression was found in association with apoptosis (r = + 0.578, P = 0,02). A novel finding was an association between low expression of Bcl-2 an/or Bcl-X-L in normal tissue and the level of expression of these proteins in the RCCs, an intrinsic variation that may be an individual patient factor. The results indicate that, in RCCs with increased expression of Bcl-2 and/or Bcl-X-L, levels of apoptosis are minimal and these combined factors may assist in progression of the cancers and resistance to treatments.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.
Resumo:
The Australian Alfred Walter Campbell (1868-1937) is remembered as one of the two chief pioneers of the study of the cytoarchitectonics of the primate cerebral cortex. He had worked in Britain carrying out neuroanatomical and neuropathological research for almost two decades before his famous monograph on Histological Studies on the Localisation of Cerebral Function appeared in 1905. In that year he returned to his native Australia and practiced for over 30 years in Sydney as a neurologist rather than a neuropathologist, publishing mainly clinical material though he was involved in the investigation of the epidemic of Australian X disease, a viral encephalitis. His abrupt change in both the nature and the location of his career at a time when he was well established in Britain appears to have been a consequence of his marriage and the need to provide for a family. His simultaneous apparent abandonment of research seems not to have really been the case. As judged from the contents of a paper presented to a local medical congress in Sydney in 1911, it appears that, in Australia, Campbell did carry out a major comparative anatomical and histological investigation of the possibility of localization of function in the cerebellar cortex. He never published this work in detail. His investigation let him to conclude that no such localization of function existed, a view contrary to the then topical interpretation of Bolk (1906), but one in accordance with Gordon Holmes' views a decade later. Campbell's circumstances in Sydney, his extremely reticent nature and the essentially negative outcome of his investigation probably explain his failure to make his study more widely known.
Resumo:
Background and Aims: Hepatic steatosis has been shown to be associated with lipid peroxidation and hepatic fibrosis in a variety of liver diseases including non-alcoholic fatty liver disease. However, the lobular distribution of lipid peroxidation associated with hepatic steatosis, and the influence of hepatic iron stores on this are unknown. The aim of this study was to assess the distribution of lipid peroxidation in association with these factors, and the relationship of this to the fibrogenic cascade. Methods: Liver biopsies from 39 patients with varying degrees of hepatic steatosis were assessed for evidence of lipid peroxidation (malondialdehyde adducts), hepatic iron, inflammation, fibrosis, hepatic ;stellate cell activation (alpha-smooth muscle actin and TGF-beta expression) and collagen type I synthesis (procollagen a 1 (I) mRNA). Results: Lipid peroxidation occurred in and adjacent to fat-laden hepatocytes and was maximal in acinar zone 3. Fibrosis was associated with steatosis (P < 0.04), lipid peroxidation (P < 0.05) and hepatic iron stores (P < 0.02). Multivariate logistic regression analysis confirmed the association between steatosis and lipid peroxidation within zone 3 hepatocytes (P < 0.05), while for hepatic iron, lipid peroxidation was seen within sinusoidal cells (P < 0.05), particularly in zone 1 (P < 0.02). Steatosis was also associated with acinar inflammation (P < 0.005). α-Smooth muscle actin expression was present in association with both lipid peroxidation and fibrosis. Although the effects of steatosis and iron on lipid peroxidation and fibrosis were additive, there was no evidence of a specific synergistic interaction between them. Conclusions: These observations support a model where steatosis exerts an effect on fibrosis through lipid peroxidation, particularly in zone 3 hepatocytes. (C) 2001 Blackwell Science Asia Pty Ltd.