114 resultados para Arm arrest
Resumo:
Placard "Brisbane 1966 not Germany 1936" on truck during Labour Day procession Brisbane 1966. Image shows arrest of student during anti war demonstration in Brisbane, Australia, 1966. City Hall tower can be seen in background.
Resumo:
Limb movement imparts a perturbation to the body. The impact of that perturbation is limited via anticipatory postural adjustments. The strategy by which the CNS controls anticipatory postural adjustments of the trunk muscles during limb movement is altered during acute back pain and in people with recurrent back pain, even when they are pain free. The altered postural strategy probably serves to protect the spine in the short term, but it is associated with a cost and is thought to predispose spinal structures to injury in the long term. It is not known why this protective strategy might occur even when people are pain free, but one possibility is that it is caused by the anticipation of back pain. In eight healthy subjects, recordings of intramuscular EMG were made from the trunk muscles during single and repetitive arm movements. Anticipation of experimental back pain and anticipation of experimental elbow pain were elicited by the threat of painful cutaneous stimulation. There was no effect of anticipated experimental elbow pain on postural adjustments. During anticipated experimental back pain, for single arm movements there was delayed activation of the deep trunk muscles and augmentation of at least one superficial trunk muscle. For repetitive arm movements, there was decreased activity and a shift from biphasic to monophasic activation of the deep trunk muscles and increased activity of superficial trunk muscles during anticipation of back pain. In both instances, the changes were consistent with adoption of an altered strategy for postural control and were similar to those observed in patients with recurrent back pain. We conclude that anticipation of experimental back pain evokes a protective postural strategy that stiffens the spine. This protective strategy is associated with compressive cost and is thought to predispose to spinal injury if maintained long term. © Guarantors of Brain 2004; all rights reserved
Resumo:
Fatigue was induced in the triceps brachii of the experimental arm by a regimen of either eccentric or concentric muscle actions. Estimates of force were assessed using a contralateral limb-matching procedure, in which target force levels (25 %, 50 % or 75 % of maximum) were defined by the unfatigued control arm. Maximum isometric force-generating capacity was reduced by 31 % immediately following eccentric contractions, and remained depressed at 24 (25 %) and 48 h (13 %) post-exercise. A less marked reduction (8.3 %) was observed immediately following concentric contractions. Those participants who performed prior eccentric contractions, consistently (at all force levels), and persistently (throughout the recovery period), overestimated the level of force applied by the experimental arm. In other words, they believed that they were generating more force than they actually achieved. When the forces applied by the experimental and the control arm, were each expressed as a proportion of the maximum force that could be attained at that time, the estimates matched extremely closely. This outcome is that which would be expected if the estimates of force were based on a sense of effort. Following eccentric exercise, the amplitude of the EMG activity recorded from the experimental arm was substantially greater than that recorded from the control arm. Cortically evoked potentials recorded from the triceps brachii (and extensor carpi radialis) of the experimental arm were also substantially larger than those elicited prior to exercise. The sense of effort was evidently not based upon a corollary of the central motor command. Rather, the relationship between the sense of effort and the motor command appears to have been altered as a result of the fatiguing eccentric contractions. It is proposed that the sense of effort is associated with activity in neural centres upstream of the motor cortex.
Resumo:
1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.
Resumo:
The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.
Resumo:
The potentially hexadentate polyamines N,N,N',N'-tetrakis(2-aminoethyl)ethane-1,2-diamine (L-1) and the octamethylated analogue N,N,N',N'-tetrakis(2-dimethylaminoethyl)ethane 1,2-diamine (L-2) have been complexed with copper(II) and the crystal structures of their complexes determined. A trigonal-bipyramidal co-ordination geometry for [Cu(HL1)][ClO4](3) was found where one aminoethyl arm is not co-ordinated. By contrast, a dinuclear structure of formula [(H2O)Cu(L-2)Cu(OH)](3+) was determined for the N-methylated analogue, where the hexaamine acts as a bridging ligand between the two square-pyramidal metal centres. Electronic and EPR spectroscopy are both consistent with these structures being maintained in solution.
Resumo:
Reaction of bis(ethane-1,2-diamine)copper(II) with acetaldehyde and nitromethane in methanol leads, stereoselectively, to the new macrocyclic complex (trans-5(R),7(R),12(S),14(S))-tetramethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane)copper(II) perchlorate alpha-[CuL1](ClO4)(2) in good yield. Reduction of the nitro groups affords the hexaamine (L-2), which was crystallized as [H4L2](ClO4)(4) . 2H(2)O and characterized by an X-ray crystal structure study (monoclinic P2(1)/n, a = 9.763(2) Angstrom, b = 12.1988(7) Angstrom, c = 13.036(2) Angstrom, beta = 105.668(7)degrees, Z = 2) and complexed with Cu-II to produce the complex beta-[Cu(H2L2)](ClO4)(4) . 2H(2)O, which has also been characterized by X-ray crystallography (monoclinic P2(1)/n, a = 9.717(4) Angstrom, b = 12.174(2) Angstrom, c = 13.036(5) Angstrom, beta = 106.51(2)degrees, Z = 2). Reaction of alpha-[CuL1](2+) with either basic hydrogen peroxide or dilute nitrous acid leads to mild reduction of the nitro groups to afford the ketoxime L-3 as its N-based isomeric Cu-II complexes, trans-I [CuL3](ClO4)(2) and trans-II [Cu(L-3)Cl]Cl . 7H(2)O, the latter of which has been characterized structurally: triclinic, <P(1)over bar> a = 10.8441(5) Angstrom, b = 11.6632(9) Angstrom, c = 11.8723(9) Angstrom, alpha = 113.634(7)degrees, beta = 95.744(5), gamma = 94.851(5)degrees Z = 2. Variations in the configurations of the coordinated amines in [CuL1](2+), [CuL2](2+), and [CuL3](2+) have a profound effect on the spectroscopy and electrochemistry of their complexes.
Resumo:
Background. Age-related motor slowing may reflect either motor programming deficits, poorer movement execution, or mere strategic preferences for online guidance of movement. We controlled such preferences, limiting the extent to which movements could be programmed. Methods. Twenty-four young and 24 older adults performed a line drawing task that allowed movements to he prepared in advance in one case (i.e., cue initially available indicating target location) and not in another (i.e., no cue initially available as to target location). Participants connected large or small targets illuminated by light-emitting diodes upon a graphics tablet that sampled pen tip position at 200 Hz. Results. Older adults had a disproportionate difficulty initiating movement when prevented from programming in advance. Older adults produced slower, less efficient movements, particularly when prevented from programming under greater precision requirements. Conclusions. The slower movements of older adults do not simply reflect a preference for online control, as older adults have less efficient movements when forced to reprogram their movements. Age-related motor slowing kinematically resembles that seen in patients with cerebellar dysfunction.
Resumo:
Reaction between formaldehyde and the pendant arm macrocyclic complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) [CoL1](3+) yielded the diimine derivative trans-6,13-dimethyl-6.13-bis(methyleneamino)-1,4,8,11-tetraazacyclotetradecane (L-3) as its cobalt(III) complex. Reduction of the imines has been achieved with NaBH4 and the meso and rac cobalt(III) complexes of trans-6,13-dimethyl-6,13-bis(methylamino)-1,4,8,11-tetraazacyclotetradecane (L-5) have been prepared. Crystal structures of the macrocyclic complexes [CoL1][ClO4](3), [CoL3][ClO4](3) and meso-[CoL5][ClO4](3).2H(2)O were determined and some unusual structural, spectroscopic and electrochemical variations observed going from the parent hexaamine [CoL1](3+) to [CoL3](3+) (diimine) and ultimately to [CoL5](3+) (bis-N-methylated hexaamine).
Resumo:
In view of the relative risk of intracranial haemorrhage and major bleeding with thrombolytic therapy, it is important ro identify as early as possible the low risk patient who may not have a net clinical benefit from thrombolysis in the setting of acute myocardial infarction. An analysis of 5434 hospital-treated patients with myocardial infarction in the Perth MONICA study showed that age below 60 and absence of previous infarction or diabetes, shock, pulmonary oedema, cardiac arrest and Q-wave or left bundle branch block on the initial ECG identified a large group of patients with a 28 day mortality of only 1%, and one year mortality of only 2%. Identification of baseline risk in this way helps refine the risk-benefit equation for thrombolytic therapy, and may help avoid unnecessary use of thrombolysis in those unlikely to benefit.