36 resultados para Antigen expression site


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic overexpression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt. DNase I) or a mutant DNase I ( ash. DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control nontransgenic littermates or wt. DNase I transgenic mice, the ash. DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure to express soluble proteins in bacteria is mainly attributed to the properties of the target protein itself, as well as the choice of the vector, the purification tag and the linker between the tag and protein, and codon usage. The expression of proteins with fusion tags to facilitate subsequent purification steps is a widely used procedure in the production of recombinant proteins. However, the additional residues can affect the properties of the protein; therefore, it is often desirable to remove the tag after purification. This is usually done by engineering a cleavage site between the tag and the encoded protein that is recognised by a site-specific protease, such as the one from tobacco etch virus (TEV). In this study, we investigated the effect of four different tags on the bacterial expression and solubility of nine mouse proteins. Two of the four engineered constructs contained hexahistidine tags with either a long or short linker. The other two constructs contained a TEV cleavage site engineered into the linker region. Our data show that inclusion of the TEV recognition site directly downstream of the recombination site of the Invitrogen Gateway vector resulted, in a loss of solubility of the nine mouse proteins. Our work suggests that one needs to be very careful when making modifications to expression vectors and combining different affinity and fusion tags and cleavage sites: (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled in part by a complex signal transduction system whose central component, ChpA, possesses nine potential sites of phosphorylation, including six histidine-containing phosphotransfer (HPt) domains, one serine-containing phosphotransfer domain, one threonine-containing phosphotransfer domain, and one CheY-like receiver domain. Here, using site-directed mutagenesis, we show that normal twitching motility is entirely dependent on the CheY-like receiver domain and partially dependent on two of the HPt domains. Moreover, under different assay conditions, point mutations in several of the phosphotransfer domains of ChpA give rise to unusual "swarming" phenotypes, possibly reflecting more subtle perturbations in the control of P. aeruginosa motility that are not evident from the conventional twitching stab assay. Together, these results suggest that ChpA plays a central role in the complex regulation of type IV pilus-mediated motility in P. aeruginosa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DC) are potent antigen-presenting cells and understanding their mechanisms of antigen uptake is important for loading DC with antigen for immunotherapy. The multilectin receptors, DEC-205 and macrophage mannose receptor (MMR), are potential antigen-uptake receptors; therefore, we examined their expression and FITC-dextran uptake by various human DC preparations. The RT-PCR analysis detected low levels of DEC-205 mRNA in immature blood DC, Langerhans cells (LC) and immature monocyte-derived DC (Mo-DC), Its mRNA expression increased markedly upon activation, indicating that DEC-205 is an activation-associated molecule. In Mo-DC, the expression of cell-surface DEC-205 increased markedly during maturation. In blood DC, however, the cell-surface expression of DEC-205 did not change during activation, suggesting the presence of a large intracellular pool of DEC-205 or post-transcriptional regulation. Immature Mo-DC expressed abundant MMR, but its expression diminished upon maturation. Blood DC and LC did not express detectable levels of the MMR, FITC-dextran uptake by both immature and activated blood DC was 30- to 70-fold less than that of LC, immature Mo-DC and macrophages. In contrast to immature Mo-DC, the FITC-dextran uptake by LC was not inhibited effectively by mannose, an inhibitor for MMR-mediated FITC-dextran uptake. Thus, unlike Mo-DC, blood DC and LC do not use the MMR for carbohydrate-conjugated antigen uptake and alternative receptors may yet be defined on these DC. Therefore, DEC-205 may have a different specificity as an antigen uptake receptor or contribute to an alternative DC function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased expression of the epithelial mucin MUC1 has been linked to tumor aggressiveness in human breast carcinoma. Recent studies have demonstrated that overexpression of MUC1 interferes with cell-substrate and cell-cell adhesion by masking cell surface integrins and E-cadherin. Additionally, the cytoplasmic tail of MUC1 is involved in signal transduction and interactions with catenins. In the present study, we have examined the in vitro expression of MUC1 mRNA and protein in a panel of 14 human breast cancer cell lines using northern blotting, western blotting, immunocytochemistry, and flow cytometry. Considerable variability of expression was noted not only between cell lines but also within several individual lines. Many cell lines such as BT 20, KPL-1, and T47D expressed abundant MUC1 whilst others such as MDA-MB-231 and MCF-7 showed intermediate expression, and MDA-MB-435 and MDA-MB-453 expressed very low levels. Low levels of MUC1 expression were associated with decreased expression of cytokeratin and increased expression of vimentin. Additionally, 12 of the cell lines were established as xenografts in immunocompromised (SCID) mice, and MUC1 expression in both the primary tumors as well as metastases was assessed immunohistochemically. In general, in vivo expression mirrored in vitro expression, although there was reduced in vivo expression in T47D and ZR-75-1 xenografts. Although we showed no correlation between tumorigenicity or metastasis and MUC1 expression, this study will assist development of experimental models to assess the influence of MUC1 of on breast cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcohol misuse leads to both widespread and localized damage in human cerebral cortex. The latter, as neuronal loss, is marked in superior frontal cortex (SFC) but milder in primary motor cortex (PMC) and elsewhere. Quantitative morphometry by Harper et al showed that neuronal loss is greater in alcoholics with comorbidity (Wernicke Korsakoff syndrome, liver cirrhosis). Previous work revealed a paradox: the marked differences in GABAA receptor density, pharmacology, and expression between alcoholics without cormorbidity and controls are muted or absent in cirrhotic alcoholics. This concurs with work by the Butterworth group on hepatic encephalopathy cases — most of whom had an alcoholic ætiology — who show only minor differences from controls. Glutamate receptor differences are muted in many autopsy studies, though we have evidence that NMDA site pharmacology may vary in cirrhotic alcoholics. Here we used Real-Time PCR normalized to GAPDH deltaCT to quantify NMDA NR1, NR2A and NR2B subunit expression in SFC and PMC samples obtained at autopsy from alcoholics with and without comorbid cirrhosis and matched controls. Overall subunit transcript expression was signifi cantly lower in alcoholic cirrhotics than in either of the other groups (F2,42 = 12.942, P < 0.001). The effect was most marked for the NR1 subunit; males differed from females, particularly in SFC. The data suggest that if excitotoxicity mediates neuronal loss in SFC, it may be implemented differently: passively in uncomplicated alcoholics, by altered GABAergic transmission; actively in cirrhotic alcoholics, by altered glutamatergic transmission. We also subdivided cases on a panel of genetic markers. Different genotypes interacted with NMDA and GABAA pharmacology and expression. Cirrhotic and uncomplicated alcoholics may differ pathogenically because of inherent characteristics in addition to possible neurotoxic sequelæ to the liver damage.