38 resultados para Anti-Atlas


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To report on the failure of thalidomide to inhibit tumour growth in an animal model of human renal cell carcinoma (RCC). Materials and methods An orthotopic xenograft model of human RCC was used in which tumour cells were implanted in the left kidney of male 'severe combined immunodeficient' mice. Thalidomide was administered by intraperitoneal injection and after 34 days the mice were killed. The extent of tumour growth was compared in treated and untreated mice. Total RNA was extracted from both tumour-affected and contralateral kidneys, and analysed by reverse transcription-polymerase chain reaction for various genes implicated in angiogenesis and metastasis in RCC. Results Thalidomide failed to inhibit the growth of xenograft tumours. The expression of angiogenic genes, e.g. vascular endothelial growth factor and fibroblast growth factor type 2 (FGF-2) within normal and tumour-affected kidney tissue was not reduced by thalidomide. Intratumoral transcription Of beta(3)-integrin, a critical component of angiogenesis, was significantly increased in response to thalidomide treatment (P

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.