36 resultados para Alpha Method non linear eccentric system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.