219 resultados para Actor-Network Theory (ANT)
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
Polytomous Item Response Theory Models provides a unified, comprehensive introduction to the range of polytomous models available within item response theory (IRT). It begins by outlining the primary structural distinction between the two major types of polytomous IRT models. This focuses on the two types of response probability that are unique to polytomous models and their associated response functions, which are modeled differently by the different types of IRT model. It describes, both conceptually and mathematically, the major specific polytomous models, including the Nominal Response Model, the Partial Credit Model, the Rating Scale model, and the Graded Response Model. Important variations, such as the Generalized Partial Credit Model are also described as are less common variations, such as the Rating Scale version of the Graded Response Model. Relationships among the models are also investigated and the operation of measurement information is described for each major model. Practical examples of major models using real data are provided, as is a chapter on choosing an appropriate model. Figures are used throughout to illustrate important elements as they are described.
Resumo:
The Systems Theory Framework was developed to produce a metatheoretical framework through which the contribution of all theories to our understanding of career behaviour could be recognised. In addition it emphasises the individual as the site for the integration of theory and practice. Its utility has become more broadly acknowledged through its application to a range of cultural groups and settings, qualitative assessment processes, career counselling, and multicultural career counselling. For these reasons, the STF is a very valuable addition to the field of career theory. In viewing the field of career theory as a system, open to changes and developments from within itself and through constantly interrelating with other systems, the STF and this book is adding to the pattern of knowledge and relationships within the career field. The contents of this book will be integrated within the field as representative of a shift in understanding existing relationships within and between theories. In the same way, each reader will integrate the contents of the book within their existing views about the current state of career theory and within their current theory-practice relationship. This book should be required reading for anyone involved in career theory. It is also highly suitable as a text for an advanced career counselling or theory course.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.
Resumo:
Potential errors in the application of mixture theory to the analysis of multiple-frequency bioelectrical impedance data for the determination of body fluid volumes are assessed. Potential sources of error include: conductive length; tissue fluid resistivity; body density; weight and technical errors of measurement. Inclusion of inaccurate estimates of body density and weight introduce errors of typically < +/-3% but incorrect assumptions regarding conductive length or fluid resistivities may each incur errors of up to 20%.
Resumo:
The classical model of capillary equilibrium in cylindrical pores is modified here by the introduction of molecular concepts and the solid fluid interaction potential. The new approach accurately predicts capillary coexistence and criticality, with results quantitatively matching those from density functional theory for nitrogen adsorption, while also predicting condensation pressures in agreement with reported experimental findings for MCM-41. The larger critical pore size for nitrogen adsorption in these materials, however, suggests a modification of the potential function parameters, evaluated here from data for hydroxylated silica.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.