70 resultados para Active Pharmaceutical Ingredients
Resumo:
DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.
Resumo:
Background-The use of corticosteroids in active Crohn's disease often becomes limited by side effects. Budesonide is a potent corticosteroid with low systemic bioavailability due to an extensive first pass liver metabolism. Aims-To compare the efficacy and safety of two dosage regimens of budesonide and prednisolone in patients with active Crohn's disease affecting the ileum and/or the ascending colon. Patients and methods-One hundred and seventy eight patients were randomised to receive budesonide controlled ileal release (CIR) capsules 9 mg once daily or 4.5 mg twice daily, or prednisolone tablets 40 mg once daily. The treatment period was 12 weeks. The primary efficacy variable was clinical remission, defined as a Crohn's Disease Activity Index (CDAI) of 150 or less. Results-After eight weeks of treatment, remission occurred in 60% of patients receiving budesonide once daily or prednisolone and in 42% of those receiving budesonide twice daily (p=0.062). The presence of glucocorticoid associated side effects was similar in all groups; however, moon face was more common in the prednisolone group (p=0.0005). The highest frequency of impaired adrenal function, as measured by a short ACTH test, was found in the prednisolone group (p=0.0023). Conclusions-Budesonide CIR, administered at 9 mg once daily or 4.5 mg twice daily, is comparable to prednisolone in inducing remission in active Crohn's disease. The single dose administration is as promptly effective as prednisolone and represents a simpler and safer therapeutic approach, with a considerable reduction in side effects.
Resumo:
Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with Fe-III. In contrast, in the absence of Fel the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.
Resumo:
Although there are formidable barriers to the oral delivery of biologically active drugs, considerable progress in the field has been made, using both physical and chemical strategies of absorption enhancement. A possible method to enhance oral absorption is to exploit the phenomenon of lipophilic modification and mono and oligosaccharide conjugation. Depending on the uptake mechanism targeted, different modifications can be employed. To target passive diffusion, lipid modification has been used, whereas the targeting of sugar transport systems has been achieved through drugs conjugated with sugars. These drug delivery units can be specifically tailored to transport a wide variety of poorly absorbed drugs through the skin, and across the barriers that normally inhibit absorption from the gut or into the brain. The delivery system can be conjugated to the drug in such a way as to release the active compound after it has been absorbed (i.e. the drug becomes a prodrug), or to form a biologically stable and active molecule (i.e. the conjugate becomes a new drug moiety). Examples where lipid, sugar and lipid-sugar conjugates have resulted in enhanced drug delivery will be highlighted in this review.
Resumo:
Evidence suggests that women who are mothers of young children have lower levels of physical activity than women of similar age who do not have children (Brown, Lee, Mishra, & Bauman, 2000). The purposes of this study were to explore the factors that constrain mothers of young children from being more physically active, and the relationship between physical activity and levels of social support available to the women. The empirical basis for this examination was provided through a study of activity levels and barriers to physical activity experienced by a sample of 543 mothers of young children from differing socioeconomic backgrounds. The data indicate that: (a) more than two-thirds of the mothers were inadequately active in their leisure time for health benefit; (b) while the vast majority of mothers expressed a desire to be more active, they were inhibited in their ability to act out their leisure preferences by a combination of structural (e.g., lack of time, money, energy) and ideological influences (e.g., sense of commitment to others); (c) access to social support (from partners, family, and friends) was seen to place some women in a better position than others to negotiate constraints that inhibit leisure participation; and (d) within groups of varying socioeconomic status (SES) there was wide variation in the amount of time spent each week in active leisure.
Resumo:
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.