120 resultados para Accelerometer prediction equations
Resumo:
New classes of integrable boundary conditions for the q-deformed (or two-parameter) supersymmetric U model are presented. The boundary systems are solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.
Resumo:
This note considers the value of surface response equations which can be used to calculate critical values for a range of unit root and cointegration tests popular in applied economic research.
Resumo:
The present study examined the relative importance of outcome expectancies and self-efficacy [1] in the prediction of alcohol dependence [2] and alcohol consumption in a sample of young adult drinkers drawn from a milieu previously reported as supportive of risky drinking. In predicting alcohol dependence, outcome expectancies were found to mediate self-efficacy and the same pattern was found for both males and females. This suggests that male and female drinkers may become more similar as they progress along the drinking continuum from risky drinking to dependent drinking. However, in women, in comparison to men, a greater array of expectancies and self-efficacy scales were found to predict heavy drinking, as measured by quantity and frequency. These results suggest that heavy drinking women are particularly at risk of developing drinking related complications and that preventative education needs to take into account gender differences.
Resumo:
Recent El Nino events have stimulated interest in the development of modeling techniques to forecast extremes of climate and related health events. Previous studies have documented associations between specific climate variables (particularly temperature and rainfall) and outbreaks of arboviral disease. In some countries, such diseases are sensitive to Fl Nino. Here we describe a climate-based model for the prediction of Ross River virus epidemics in Australia. From a literature search and data on case notifications, we determined in which years there were epidemics of Ross River virus in southern Australia between 1928 and 1998. Predictor variables were monthly Southern Oscillation index values for the year of an epidemic or lagged by 1 year. We found that in southeastern states, epidemic years were well predicted by monthly Southern Oscillation index values in January and September in the previous year. The model forecasts that there is a high probability of epidemic Ross River virus in the southern states of Australia in 1999. We conclude that epidemics of arboviral disease can, at least in principle, be predicted on the basis of climate relationships.
Resumo:
The objective of the present study was to evaluate the performance of a new bioelectrical impedance instrument, the Soft Tissue Analyzer (STA), which predicts a subject's body composition. A cross-sectional population study in which the impedance of 205 healthy adult subjects was measured using the STA. Extracellular water (ECW) volume (as a percentage of total body water, TBW) and fat-free mass (FFM) were predicted by both the STA and a compartmental model, and compared according to correlation and limits of agreement analysis, with the equivalent data obtained by independent reference methods of measurement (TBW measured by D2O dilution, and FFM measured by dual-energy X-ray absorptiometry). There was a small (2.0 kg) but significant (P < 0.02) difference in mean FFM predicted by the STA, compared with the reference technique in the males, but not in the females (-0.4 kg) or in the combined group (0.8 kg). Both methods were highly correlated. Similarly, small but significant differences for predicted mean ECW volume were observed. The limits of agreement for FFM and ECW were -7.5-9.9 and -4.1-3.0 kg, respectively. Both FFM and ECW (as a percentage of TBW) are well predicted by the STA on a population basis, but the magnitude of the limits of agreement with reference methods may preclude its usefulness for predicting body composition in an individual. In addition, the theoretical basis of an impedance method that does not include a measure of conductor length requires further validation. (C) Elsevier Science Inc. 2000.
Resumo:
Objectives. The present study was designed to test the diathesis-stress components of Beck's cognitive theory of depression and the reformulated learned helplessness model of depression in the prediction of postpartum depressive symptomatology. Design and methods. The research used a two-wave longitudinal design-data were collected from 65 primiparous women during their third trimester of pregnancy and then 6 weeks after the birth. Cognitive vulnerability and initial depressive symptomatology were assessed at Time 1, whereas stress and postpartum depressive symptomatology were assessed at Time 2. Results. There was some support for the diathesis-stress component of Beck's cognitive theory, to the extent that the negative relationship between both general and maternal-specific dysfunctional attitudes associated with performance evaluation and Time 2 depressive symptomatology was strongest for women who reported high levels of parental stress. In a similar vein, the effects of dysfunctional attitudes (general and maternal-specific) associated with performance evaluation and need for approval (general measure only) on partner ratings of emotional distress were evident only among those women whose infants were rated as being temperamentally difficult. Conclusion. There was no support for the diathesis-stress component of the reformulated learned helplessness model of depression; however, there was some support for the diathesis-stress component of Beck's cognitive theory.
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.
Resumo:
Carbon monoxide is the chief killer in fires. Dangerous levels of CO can occur when reacting combustion gases are quenched by heat transfer, or by mixing of the fire plume in a cooled under- or overventilated upper layer. In this paper, carbon monoxide predictions for enclosure fires are modeled by the conditional moment closure (CMC) method and are compared with laboratory data. The modeled fire situation is a buoyant, turbulent, diffusion flame burning under a hood. The fire plume entrains fresh air, and the postflame gases are cooled considerably under the hood by conduction and radiation, emulating conditions which occur in enclosure fires and lead to the freezing of CO burnout. Predictions of CO in the cooled layer are presented in the context of a complete computational fluid dynamics solution of velocity, temperature, and major species concentrations. A range of underhood equivalence ratios, from rich to lean, are investigated. The CMC method predicts CO in very good agreement with data. In particular, CMC is able to correctly predict CO concentrations in lean cooled gases, showing its capability in conditions where reaction rates change considerably.
Resumo:
The amount of crystalline fraction present in monohydrate glucose crystal-solution mixture up to 110% crystal in relation to solution (crystal:solution=110:100) was determined by water activity measurement. It was found that the water activity had a strong linear correlation (R-2=0.994) with the amount of glucose present above saturation. Difference in the water activities of the crystal-solution mixture (a(w1)) and the supersaturated solution (a(w2)) by re-dissolving the crystalline fraction allowed calculation of the amount of crystalline phase present (DeltaG) in the mixture by an equation DeltaG=846.97(a(w1)-a(w2)). Other methods such as Raoult's, Norrish and Money-Born equations were also tested for the prediction of water activity of supersaturated glucose solution. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after-ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37degreesC. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after-ripening by germinating seeds with 12-hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after-ripening at 37degreesC than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after-ripening site. While low seed WC slowed dormancy release in seeds held at 37degreesC, dormancy release in seeds after-ripened under Western Australian field conditions was adequately described by thermal after-ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.