52 resultados para AT(2) RECEPTORS
Resumo:
P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Estrogen influences regional adipose tissue distribution and the accompanying cardiovascular disease risk. To elucidate the mechanisms of this link further, we assessed whether human preadipocytes (PAs) expressed estrogen receptors (ERs) and whether there were any regional or gender differences in ER complement. Human PAs expressed the ER alpha gene but not ERP by reverse transcriptase-polymerase chain reaction, possessed ER alpha protein on Western blotting, and displayed specific 17 beta -estradiol (E-2) binding with calculated dissociation constants of 0.78 nM, 0.96 nM, and 1.19 nM and maximal binding capacities of 9.3 fmol/mg, 14.6 fmol/ mg, and 18.2 fmol/mg from three whole cell binding assays. There were no regional differences in ER alpha complement for males or females. There were no gender differences in ER alpha complement for subcutaneous or visceral samples. We conclude that ER alpha but not ERP is present in human PAs. This suggests that the effect of estrogen on adipose tissue deposition has a contribution from the direct effect of estrogen on human PAs via ER alpha.
Resumo:
Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.
Resumo:
There is a small increase in the functional beta(2)-adrenoceptor response on the spontaneously hypertensive rat (SHR) left atrium in the early stages of hypertension. In the present study, the functional beta(1)- and beta(2)-adrenoceptors of the left and right atrium in SHR pre-hypertension and age-matched (5-week-old) Wistar Kyoto (WKY) rats were characterized. Contractility methods with isoprenaline, T-0509 (a selective beta(1)-adrenoceptor agonist) and procaterol (a selective beta(2)-adrenoceptor agonist) were used. At 5 weeks, the SHRs were pre-hypertensive. Isoprenaline was more potent on the left atrium of 5-week-old SHRs than WKY rats. Bisoprolol, a selective beta(1)-adrenoceptor antagonist, was more potent against isoprenaline and T-0509 on the SHR than WKY rat left atrium. ICI 118,551, a selective beta(2)-adrenoceptor antagonist, was more potent against procaterol and T-0509 on the SHR than WKY rat left atrium. The results with bisoprolol and ICI 118,551 suggest that there are more functional beta(1)- and beta(2)-adrenoceptors on the left atrium of 5-week-old SHRs than WKY rats. Isoprenaline, T-0509 and procaterol were equipotent on the right atrium of 5-week-old WKY rats and SHRs. Bisoprolol was more potent against isoprenaline, T-0509 and procaterol on the SHR than WKY rat right atrium. ICI 118,551 was more potent against T-0509, but not isoprenaline and procaterol, on the SHR than WKY rat left atrium. This suggests there are more functional beta(1)-adrenoceptors, and probably more functional beta(2)-adrenoceptors, on the right atrium of 5-week-old SHRs than WKY rats. These functional differences in beta(1)-and beta(2)-adrenoceptor-mediated responses of the left and right atria of pre-hypertensive SHRs cannot be caused by hypertension, and may be associated with the onset of hypertension.
Resumo:
Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI- secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.
Resumo:
Proteinase-activated receptor (PAR) type 2 (PAR-2) has been shown to mediate ion secretion in cultured epithelial cells and rat jejunum. With the use of a microUssing chamber, we demonstrate the role of PAR-2 for ion transport in native human colonic mucosa obtained from 30 normal individuals and 11 cystic fibrosis (CF) patients. Trypsin induced Cl- secretion when added to the basolateral but not luminal side of normal epithelia. Activation of Cl- secretion by trypsin was inhibited by indomethacin and was further increased by cAMP in normal tissues but was not present in CF colon, indicating the requirement of luminal CF transmembrane conductance regulator. Effects of trypsin were largely reduced by low Cl-,by basolateral bumetanide, and in the presence of barium or clotrimazole, but not by tetrodotoxin. Furthermore, trypsin-induced secretion was inhibited by the Ca2+-ATPase inhibitor cyclopiazonic acid and in low-Ca2+ buffer. The effects of trypsin were almost abolished by trypsin inhibitor. Thrombin, an activator of PAR types 1, 3, and 4, had no effects on equivalent short-circuit currents. The presence of PAR-2 in human colon epithelium was confirmed by RT-PCR and additional experiments with PAR-2-activating peptide. PAR-2-mediated intestinal electrolyte secretion by release of mast cell tryptase and potentiation of PAR-2 expression by tumor necrosis factor-alpha may contribute to the hypersecretion observed in inflammatory processes such as chronic inflammatory bowel disease.
Resumo:
Maturation of the fetal pituitary and adrenal glands allows the secretion of cortisol, which in turn leads to an increase in prostaglandin and mesotocin production. The production of prostaglandin and mesotocin results in an increase in uterine contractions and initiates birth in marsupials. The major metabolite of PGF(2alpha), 13,14-dihydro-15-keto-prostaglandin F-2alpha (PGFM), has been found in the plasma of the possum at the time of birth and administration of PGF(2alpha) to female possums induced the adoption of the birth position. Evidence that mesotocin is an integral hormone of birth in the tammar wallaby indicates that both PGF(2alpha) and mesotocin or oxytocin are required for marsupial birth. The presence of PGF(2alpha) receptors in the uterus and corpus luteum of the possum, and the in vitro uterine responsiveness to PGF(2alpha) or oxytocin, were examined. PGF(2alpha) receptors were not observed in possum uteri and the inability of PGF(2alpha) to cause contractions indicates that PGF(2alpha) is not involved directly in contraction of the uterus at parturition. The presence of oxytocin and mesotocin receptors in the uterus of possoms and the ability of oxytocin to induce uterine contraction in vitro supports the view that mesotocin is required for expulsion of the young from the uterus. Low numbers of PGF(2alpha) receptors were found in the possum corpus luteum at birth, indicating an involvement of PGF(2alpha) in regression of the corpus luteum.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
The present study describes the isolation of the first neurotoxin (acantoxin IVa) from Acanthophis sp. Seram death adder venom and an examination of its activity at nicotinic acetylcholine receptor (naChR) subtypes. Acantoxin IVa (MW 6815; 0.1-1.0 muM) caused concentration-dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms, supramaximal V) and inhibited contractile responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle, confirming that this toxin is a postsynaptic neurotoxin. Acantoxin IVa (1-10 nM) caused pseudo-irreversible antagonism at skeletal muscle nAChR with an estimated pA(2) Of 8.36 +/- 0.17. Acantoxin IVa was approximately two-fold less potent than the long-chain (Type 11) neurotoxin, alpha-bungarotoxin. With a pK(i) value of 4.48, acantoxin IVa was approximately 25,000 times less potent than a-bungarotoxin at alpha7-type neuronal nAChR. However, in contrast to alpha-bungarotoxin, acantoxin IVa completely inhibited specific [H-3]-methyllycaconitine (MLA) binding in rat hippocampus homogenate. Acantoxin IVa had no activity at ganglionic nAChR, alpha4beta2 subtype neuronal nAChR or cytisine-resistant [H-3]-epibatidine binding sites. While long-chain neurotoxin resistant [H-3]-MLA binding in hippocampus homogenate requires further investigation, we have shown that a short-chain (Type 1) neurotoxin is capable of fully inhibiting specific [H-3]-MLA binding. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na+ channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na+ (Na-v) channels contain typical PY motifs (PPXY), and a further Na-v contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na-v channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na+ channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na-v channels in vivo.
Resumo:
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.
Resumo:
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.