132 resultados para 671402 Medical instrumentation
Resumo:
Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.
Resumo:
Based on our previously developed electrical heart model, an electromechanical biventricular model, which couples the electrical property and mechanical property of the heart, was constructed and the right ventricular wall motion and deformation was simulated using this model. The model was developed on the basis of composite material theory and finite element method. The excitation propagation was simulated by electrical heart model, and the resultant active forces were used to study the ventricular wall motion during systole. The simulation results show that: (1) The right ventricular free wall moves towards the septum, and at the same time, the base and middle of free wall move towards the apex, which reduce the volume of right ventricle; (2) The minimum principle strain (E3) is largest at the apex, then at the middle of free wall, and its direction is in the approximate direction of epicardial muscle fibers. These results are in good accordance with solutions obtained from MR tagging images. It suggests that such electromechanical biventricular model can be used to assess the mechanical function of two ventricles.
Resumo:
Ultra wideband (UWB) radar has been extensively investigated both theoretically and practically for the identification buried artifacts. Ground probe radar (GPR) concentrates on the identification of lightly buried land mines, unexploded ordnance (UXO) and archeological targets. The same technology is proposed in a similar context for the rapid identification of in vivo implanted metallic prostheses. The technique is based on resonance based target identification and the paper investigates UWB scattering from a metallic hip prosthesis in free space as a first step in the identification process.
Resumo:
An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B1 field are used to calculate the current density on the coil cylinder. With B1 field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B1 fields. FDTD is employed to calculate B1 field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B1 field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.
Resumo:
In this work, a new design concept in chest imaging for MRI application is presented. A focused, 8-element transceive torso phased array coil is designed to investigate transmitting focused B1 field deep within the torso to enhance signal intensity and use in conjunction with SENSE reconstruction technique. Hybrid FDTD/MOM method is used to accurately predict the RF behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept which shows that B1 field focusing with SENSE reconstruction is achievable, and the 8-element transceive torso phased array coil has the advantage to be used in transmit and receive mode for optimum and fast chest imaging.