154 resultados para 291003 Photogrammetry and Remote Sensing
Resumo:
Techniques for improving the signal to clutter ratio of an. ultra-wideband SAR designed to detect small mine-like objects in the surface of the ground were investigated. In particular, images were collected using different bistatic antenna configurations in an attempt to decorrelate the clutter with respect to the targets. The images were converted to a reference depression angle, summed, and then converted to ground coordinates. The resulting target strengths were then compared with the amplitude distribution of the ground clutter to show the improvement obtained. While some improvement was demonstrated, this was for the relatively easy scenario of targets on the surface partially obscured by grass. Detection based on thresholding the raw RF signal (the bipolar response) rather than the envelope (baseband I-2 + Q(2)) was also considered to further enhance target-to-clutter ratios.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Wet Tropics World Heritage Area in Far North Queens- land, Australia consists predominantly of tropical rainforest and wet sclerophyll forest in areas of variable relief. Previous maps of vegetation communities in the area were produced by a labor-intensive combination of field survey and air-photo interpretation. Thus,. the aim of this work was to develop a new vegetation mapping method based on imaging radar that incorporates topographical corrections, which could be repeated frequently, and which would reduce the need for detailed field assessments and associated costs. The method employed G topographic correction and mapping procedure that was developed to enable vegetation structural classes to be mapped from satellite imaging radar. Eight JERS-1 scenes covering the Wet Tropics area for 1996 were acquired from NASDA under the auspices of the Global Rainforest Mapping Project. JERS scenes were geometrically corrected for topographic distortion using an 80 m DEM and a combination of polynomial warping and radar viewing geometry modeling. An image mosaic was created to cover the Wet Tropics region, and a new technique for image smoothing was applied to the JERS texture bonds and DEM before a Maximum Likelihood classification was applied to identify major land-cover and vegetation communities. Despite these efforts, dominant vegetation community classes could only be classified to low levels of accuracy (57.5 percent) which were partly explained by the significantly larger pixel size of the DEM in comparison to the JERS image (12.5 m). In addition, the spatial and floristic detail contained in the classes of the original validation maps were much finer than the JERS classification product was able to distinguish. In comparison to field and aerial photo-based approaches for mapping the vegetation of the Wet Tropics, appropriately corrected SAR data provides a more regional scale, all-weather mapping technique for broader vegetation classes. Further work is required to establish an appropriate combination of imaging radar with elevation data and other environmental surrogates to accurately map vegetation communities across the entire Wet Tropics.
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.
Mapping olive varieties and within-field spatial variability using high resolution quickbird imagery
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring environmental health indicators. The objective of this work was to evaluate IKONOS and Landsat-7 ETM+ imagery for mapping riparian vegetation health indicators in tropical savannas for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from IKONOS data were used for estimating percentage canopy cover (r2=0.86). Pan-sharpened IKONOS data were used to map riparian species composition (overall accuracy=55%) and riparian zone width (accuracy within 4 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones, which may be used as riparian environmental health indicators