34 resultados para 250502 Cartografía geográfica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For some applications for fluoropolymers they must be subjected to high-energy radiation, e.g., when they are grafted with styrene using an irradiation method to produce fuel cell membranes or matrix supports for combinatorial chemistry. In some of these applications they may be subjected to mechanical stress or elevated temperature, so it is important to elucidate the effects of the radiolysis on these properties. In the present work the effect of gamma-radiolysis on the glass transition, melting behavior, and thermal stability of PFA has been studied as well as the effect of the radiolysis on the tensile properties of the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of electron beam radiation on a perfluoroalkoxy (PFA) resin was examined using solid-state high-speed magic angle spinning F-19 NMR spectroscopy and FT-IR spectroscopy. Samples were prepared for analysis by subjecting them to electron beam radiation in the dose range 0.5-2.0 MGy at 633 K, which is above the crystalline melting temperature. The new structures were identified and include new saturated chain ends, short and long branches, unsaturated groups, and cross-links. The radiation chemical yield (G value) of new long branch points was greater than the G value of new chain ends, suggesting that cross-linking is the net radiolytic process. This conclusion was supported by an observed decrease in the crystallinity and an increase in the optical clarity of the polymer.