81 resultados para 091207 Metals and Alloy Materials
Resumo:
Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallics between the die and the cast alloy. It is generally believed that close to 1% Fe is necessary in the aluminium alloy to reduce soldering. However, the role of iron in the interfacial reaction has not been studied in detail. In this investigation, reaction couples were formed between H13 tool steel substrates and an Al-11Si-2.5Cu melt containing either 0.15 or 0.60% Fe. Examination revealed distinctly different intermetallic layer morphology. The overall growth and chemistry of the reaction layer and the reaction rate measured by the consumption of the substrate were compared for the two alloy melts. It was demonstrated that a higher iron content reduces the rate of interfacial reaction, consistent with an observed thicker compact ( solid) intermetallic layer. Hence, the difference in reaction rate can be explained by a significant reduction in the diffusion flux due to a thicker compact layer. Finally, the mechanism of the growth of a thicker compact layer in the higher iron melt is proposed, based on the phase relations and diffusion both within and near the interfacial reaction zone. (C) 2004 Kluwer Academic Publishers.
Resumo:
The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the betaor Q phase, oriented along < 010 >. directions and theta' plates lying on {001}(alpha). planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three apparently distinct and different approaches have been proposed to account for the crystallographic features of diffusion-controlled precipitation. These three models are based on (a) an invariant line in the habit plane, (b) the parallelism of a pair of Deltags that are perpendicular to the habit plane and (c) the parallelism of a pair of Moire fringes that are in turn parallel to the habit plane. The purpose of the present paper is to show that these approaches are in fact absolutely equivalent and that when certain conditions are satisfied they are essentially the same as the recent edge-to-edge matching model put forward by the authors. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The yield strength of high-pressure diecast (hpdc) test bars of alloy AZ91 increases with decreasing section thickness while its hardness remains approximately constant. This behaviour is in contrast with that of the gravity cast alloy, whose hardness scales with the yield strength. Vickers hardness measured on the surface of hpdc test bars using increasing loads shows that the subsurface porosity layer usually found in hpdc material may gradually collapse under the indent, lowering the hardness. However, this is insufficient to explain the lack of correlation between hardness and yield strength. It is argued that the low strain-hardening rate of high-pressure diecast material leads to lower than expected hardness values. In addition, it is shown that the plastic zone under a macro indentation is largely contained by the softer core of the castings, rendering hardness insensitive to the casting thickness. It is concluded that macrohardness is too coarse a tool for a meaningful determination of the strength of hpdc material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Recently it has been shown that modification with strontium causes an increase in the size of eutectic grains. The eutectic grain size increases because there are fewer nucleation events, possibly due to the poisoning of phosphorus-based nuclei that are active in the unmodified alloy. The current paper investigates the effect of strontium concentration on the eutectic grain size. In the aluminium-10 wt.% silicon alloy used in this research, for fixed casting conditions, the eutectic grain size increases as the strontium concentration increases up to approximately 150ppm, beyond which the grain size is relatively stable. This critical strontium concentration is likely to differ depending on the composition of the base alloy, including the concentration of minor elements and impurities. It is concluded that processing and in-service properties of strontium modified aluminium-silicon castings are likely to be more stable if a minimum critical strontium concentration is exceeded. If operating below this critical strontium concentration exceptional control over composition and casting conditions is required. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.