328 resultados para Leckingfield Manor House, Yorkshire, England.
Resumo:
The Upper Devonian to Lower Carboniferous volcanosedimentary rocks of the Yarrol terrane of the northern New England Fold Belt have previously been ascribed to a forearc basin setting. New data presented here, however, suggest that the Yarrol terrane developed as a backarc basin during the Middle to early Late Devonian. Based on field studies, we recognise four regionally applicable strati graphic units: (i) a basal, ?Middle to Upper Devonian submarine mafic volcanic suite (Monal volcanic facies association); (ii) the lower Frasnian Lochenbar beds that locally unconformably overlie the Monal volcanic facies association: (iii) the Three Moon Conglomerate (Upper Devonian - Lower Carboniferous): and (iv) the Lower Carboniferous Rockhampton Group characterised by the presence of oolitic limestone. Stratigraphic and compositional differences suggest the Monal volcanic facies association post-dates Middle Devonian silicic-dominated magmatism that was coeval with gold-copper mineralisation at Mt Morgan. The Lochenbar beds, Three Moon Conglomerate and Rockhampton Group represent a near-continuous sedimentary record of volcanism that changed in composition and style from mafic effusive (Late Devonian) to silicic explosive volcanism (Early Carboniferous). Palaeocurrent data from the Three Moon Conglomerate and Rockhampton Group indicate dispersal of sediment to the west and northwest, and are inconsistent with derivation from a volcanic-are source situated to the west (Connors-Auburn Arch). Geochemical data show that the Monal volcanic facies association ranges from tholeiitic subalkaline basalts to calc-alkaline basaltic andesite. Trace and rare-earth element abundances are distinctly MORE-like (e.g, light rare earth element depletion), with only moderate enrichment of the large-ion lithophile elements in some units, and negative Nb anomalies, suggesting a subduction-related signature. Basalts of the Monal volcanic facies association are best described as transitional between calc-alkali basalts and N-MORB. The elevated high field strength element contents (e.g. Zr, Y, Ti) are higher than modern island-are basalts, but comparable to basalts that floor modern backarc basins. This geochemical study, coupled with stratigraphic relationships, suggest that the eruption of backarc basin basalts followed widespread Middle Devonian, extension-related silicic magmatism (e.g. Retreat Batholith, Mt Morgan), and floored the Yarrol terrane. The Monal volcanic facies association thus shows similarities in its tectonic environment to the Lower Permian successions (e.g. Rookwood Volcanics) of the northern New England Fold Belt. These mafic volcanic sequences are interpreted to record two backarc basin-forming periods (Middle - Late Devonian and Late Carboniferous - Early Permian) during the Late Palaeozoic history of the New England Orogen. Silicic-dominated explosive volcanism, occurring extensively across the northern New England Fold Belt in the Early Carboniferous (Varrol terrane, Campwyn Volcanics, Drummond and Burdekin Basins), reflects another period of crustal melting and extension, most likely related to the opening of the Drummond Basin.
Resumo:
Passive techniques as an alternative to artificial cooling can bring important energy, environmental, financial, operational and qualitative benefits. However, regions such as the wet tropics can reach high levels of thermal stress in which passive means alone are unable to provide appropriate thermal comfort standards for some parts of the year. Despite a great accumulation of empirical information on the passive performance of houses for either free-running or conditioned modes, very little work has been done on the thermal performance of buildings that can operate with a mixed-running strategy in warm-humid climates. Buildings with such design features are able to balance the needs for comfort, privacy, and energy efficiency during different periods of the year. As free-running and conditioned modes are believed by many to be 'opposite' approaches, and have been presented as separate strategies, this paper demonstrates that not all parameters are directly opposite and a possible dual-mode integrated operation can be used for warm-humid locations for maximum comfort and minimum energy requirements. For this purpose, simulation runs using ESP-R (University of Strathclyde, ESRU, UK) were based on the climate data of Darwin (Australia) and on the ventilation styles of the house: free running and conditioned. Design features applicable to both, i.e. for a dual mode operation could be identified and the differences between conditioned and free running were demonstrated and proved not to be totally conflicting and therefore suitable for a dual mode operation. Different daily usage profiles (five use patterns were defined), and zoning of sleeping and living areas are presented. The dual mode use patterns compared to the base case house, for all the user possibilities, had improved performances of 17-52%, when compared to the free-running mode and 66-98% when compared to the conditioned mode. Simulation runs using other warm-humid climates (Miami, USA; Sao Luis, Brazil; Kuala Lumpur, Malaysia) were also conducted and compared to the results found for Darwin. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Upper Devonian to Lower Carboniferous strata of the Campwyn Volcanics of east central Queensland preserve a substantial sequence of first-cycle volcaniclastic sedimentary and coeval volcanic rocks that record prolonged volcanic activity along the northern New England Fold Belt. The style and scale of volcanism varied with time, producing an Upper Devonian sequence of mafic volcano-sedimentary rocks overlain by a rhyolitic ignimbrite-dominated sequence that passes upward into a Lower Carboniferous limestone-bearing sedimentary sequence. We define two facies associations for the Campwyn Volcanics. A lower facies association is dominated by mafic volcanic-derived sedimentary breccias with subordinate primary mafic volcanic rocks comprising predominantly hyaloclastite and peperite. Sedimentary breccias record episodic and high energy, subaqueous depositional events with clastic material sourced from a mafic lava-dominated terrain. Some breccias contain a high proportion of attenuated dense, glassy mafic juvenile clasts, suggesting a syn-eruptive origin. The lower facies association coarsens upwards from a lithic sand-dominated sequence through a thick interval of pebble- to boulder-grade polymict volcaniclastic breccias, culminating in facies that demonstrate subaerial exposure. The silicic upper facies association marks a significant change in eruptive style, magma composition and the nature of eruptive sources, as well as the widespread development of subaerial depositional conditions. Crystal-rich, high-grade, low- to high-silica rhyolite ignimbrites dominate the base of this facies association. Biostratigraphic age controls indicate that the ignimbrite-bearing sequences are Famennian to lower-mid Tournaisian in age. The ignimbrites represent extra-caldera facies with individual units up to 40 m thick and mostly lacking coarse lithic breccias. Thick deposits of pyroclastic material interbedded with fine-grained siliceous sandstone and mudstone (locally radiolarian-bearing) were deposited from pyroclastic flows that crossed palaeoshorelines or represent syn-eruptive, resedimented pyroclastic material. Some block-bearing lithic-pumice-crystal breccias may also reflect more proximal subaqueous silicic explosive eruptions. Crystal-lithic sandstones interbedded with, and overlying the ignimbrites, contain abundant detrital volcanic quartz and feldspar derived from the pyroclastic deposits. Limestone is common in the upper part of the upper facies association, and several beds are oolitic (cf. Rockhampton Group of the Yarrol terrane). Overall, the upper facies association fines upward and is transgressive, recording a return to shallow-marine conditions. Palaeocurrent data from all stratigraphic levels in the Campwyn Volcanics indicate that the regional sediment-dispersal direction was to the northwest, and opposed to the generally accepted notion of easterly sediment dispersal from a volcanic arc source. The silicic upper facies association correlates in age and lithology to Early Carboniferous silicic volcanism in the Drummond (Cycle 1) and Burdekin Basins, Connors Arch, and in the Yarrol terranes of eastern Queensland. The widespread development of silicic volcanism in the Early Carboniferous indicates that silicic (rift-related) magmatism was not restricted to the Drummond Basin, but was part of a more substantial silicic igneous province.