290 resultados para Pore Structure
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
The effect of pore-network connectivity on binary liquid-phase adsorption equilibria using the ideal adsorbed solution theory (LAST) was studied. The liquid-phase binary adsorption experiments used ethyl propionate, ethyl butyrate, and ethyl isovalerate as the adsorbates and commercial activated carbons Filtrasorb-400 and Norit ROW 0.8 as adsorbents. As the single-component isotherm, a modified Dubinin-Radushkevich equation was used. A comparison with experimental data shows that incorporating the connectivity of the pore network and considering percolation processes associated with different molecular sizes of the adsorptives in the mixture, as well as their different corresponding accessibility, can improve the prediction of binary adsorption equilibria using the LAST Selectivity of adsorption for the larger molecule in binary systems increases with an increase in the pore-network coordination number, as well with an increase in the mean pore width and in the spread of the pore-size distribution.
Resumo:
Regiospecific bromination of 2,4,4-trimethyl-cyclohex-2-enone was achieved and the X-ray crystal structure of 6-bromo-2,4,4-trimethyl-cyclohex-2-enone is presented.
Resumo:
9-Carboxyhexahydro-7-methoxy-4a,7-ethano-benzopyran-5-en-1-one (1) was prepared and examined by X-ray crystallography to probe its potential as a new peptide scaffold/template. The crystal structure of the anhydride precursor 7-(2-acetoxyethyl)-4-methoxy-3a,4,7,7a-tetrahydro-4,7-ethanoisobenzofuran-1,3-dione (6) is also reported.