41 resultados para weak approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of a single-mode cavity on the Autler-Townes doublet that arises when a three-level atom is strongly driven by a laser field tuned to one of the atomic transitions and probed by a tunable, weak field coupled to the other transition. We assume that the cavity mode is coupled to the driven transition and the cavity and laser frequencies are equal to the atomic transition frequency. We find that the Autler-Townes spectrum can have one, two or three peaks depending on the relative magnitudes of the Rabi frequencies of the cavity and driving fields. We show that, in order to understand the three-peaked spectrum, it is necessary to go beyond the secular approximation, leading to interesting quantum interference effects. We find that the positions and relative intensities of the three spectral components are affected strongly by the atom-cavity coupling strength g and the cavity damping K. For an increasing g and/or decreasing K the triplet evolves into a single peak. This results in 'undressing' of the system such that the atom collapses into its ground state. We interpret the spectral features in terms of the semiclassical dressed-atom model, and also provide complementary views of the cavity effects in terms of quantum Langevin equations and the fully quantized, 'double -dressing' model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An existing capillarity correction for free surface groundwater flow as modelled by the Boussinesq equation is re-investigated. Existing solutions, based on the shallow flow expansion, have considered only the zeroth-order approximation. Here, a second-order capillarity correction to tide-induced watertable fluctuations in a coastal aquifer adjacent to a sloping beach is derived. A new definition of the capillarity correction is proposed for small capillary fringes, and a simplified solution is derived. Comparisons of the two models show that the simplified model can be used in most cases. The significant effects of higher-order capillarity corrections on tidal fluctuations in a sloping beach are also demonstrated. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of watertable fluctuations in a coastal aquifer is important for coastal management. However, most previous approaches have based on the one-dimensional Boussinesq equation, neglecting variations in the coastline and beach slope. In this paper, a closed-form analytical solution for a two-dimensional unconfined coastal aquifer bounded by a rhythmic coastline is derived. In the new model, the effect of beach slope is also included, a feature that has not been considered in previous two-dimensional approximations. Three small parameters, the shallow water parameter (epsilon), the amplitude parameter (a) and coastline parameter (beta) are used in the perturbation approximation. The numerical results demonstrate the significant influence of both the coastline shape and beach slopes on tide-driven coastal groundwater fluctuations. (c) 2004 Elsevier Ltd. All rights reserved.