18 resultados para water absorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption and excretion of fluoride and arsenic were measured in a group of healthy volunteers given drinking water with naturally high concentration of fluoride (F 2.3 mg/l), or high concentration of arsenic (As 0.15 mg/l), or high concentrations of both fluoride and arsenic (F 2.25 mg/l, As 0.23 mg/l and F 4.05 mg/l, As 0.58 mg/l), respectively. The results indicated that, for arsenic, the absorption rate, the proportion of urinary excretion and the biological-half-life did not show statistically significant differences between drinking water containing high arsenic alone and drinking water containing different levels of high arsenic and fluoride. Excretion and retention of arsenic were positively correlated to the total arsenic intake. Similar results were observed for fluoride. This suggests that there are different metabolic processes for arsenic and fluoride in respect to absorption and excretion; and no joint action can be attributed by these two elements. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.