20 resultados para venous circulation
Resumo:
New Zealand has a good Neogene plant fossil record. During the Miocene it was without high topography and it was highly maritime, meaning that its climate, and the resulting vegetation, would be controlled dominantly by zonal climate conditions. Its vegetation record during this time suggests the climate passed from an ever-wet and cool but frostless phase in the Early Miocene in which Nothofagus subgenus Brassospora was prominent. Then it became seasonally dry, with vegetation in which palms and Eucalyptus were prominent and fires were frequent, and in the mid-Miocene, it developed a dry-climate vegetation dominated by Casuarinaceae. These changes are reflected in a sedimentological change from acidic to alkaline chemistry and the appearance of regular charcoal in the record. The vegetation then changed again to include a prominent herb component including Chenopodiaceae and Asteraceae. Sphagnum became prominent, and Nothofagus returned, but mainly as the subgenus Fuscospora (presently restricted to temperate climates). This is interpreted as a return to a generally wet, but now cold climate, in which outbreaks of cold polar air and frost were frequent. The transient drying out of a small maritime island and the accompanying vegetation/climate sequence could be explained by a higher frequency of the Sub-Tropical High Pressure (STHP) cells (the descending limbs of the Hadley cells) over New Zealand during the Miocene. This may have resulted from an increased frequency of 'blocking', a synoptic situation which occurs in the region today. An alternative hypothesis, that the global STHP belt lay at a significantly higher latitude in the early Neogene (perhaps 55degreesS) than today (about 30degreesS), is considered less likely because of physical constraints on STHP belt latitude. In either case, the difference between the early Neogene and present situation may have been a response to an increased polar-equatorial temperature gradient. This contrasts with current climate models for the geological past in which the latitude of the High Pressure belt impact is held invariant though geological time. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The use of thermodilution and other methods of monitoring in dogs during surgery and critical care was evaluated. Six Greyhounds were anaesthetised and then instrumented by placing a thermodilution catheter into the pulmonary artery via the jugular vein. A catheter in the dorsal pedal artery also permitted direct measurement of arterial pressures. Core body temperature (degreesC) and central venous pressure (mmHg) were measured, while cardiac output (mL/min/kg) and mean arterial pressure (mmHg) were calculated. A mid-line surgical incision was performed and the physiological parameters were monitored for a total of two hours. All physiological parameters generally declined, although significant increases (P<0.05) were noted for cardiac output following surgical incision. Central venous pressure was maintained at approximately 0mmHg by controlling an infusion of sterile saline. Core body temperature decreased from 37.1+/-0.6degreesC (once instrumented) to 36.6+/-0.60degreesC (at the end of the study), despite warming using heating pads. Physiological parameters indicative of patient viability will generally decline during surgery without intervention. This study describes an approach that can be undertaken in veterinary hospitals to accurately monitor vital signs in surgical and critical care patients.
Resumo:
Background: The surgical cure rate for primary hyperparathyroidism is greater than 95%. For those who have recurrent or persistent disease, preoperative localization improves reoperation success rates. Selective parathyroid venous sampling (SPVS) for intact parathyroid hormone is particularly useful when non-invasive localization techniques are negative or inconclusive. Methods: We present all known cases (n = 13) between 1994 and 2002 who had venous sampling for localization at our institution prior to reoperation for recurrent or persistent primary hyperparathyroidism. Comparison was made with non-invasive localization procedures. Results of invasive and non-invasive localization were correlated with surgical findings. Results: Of the nine reoperated cases, eight had positive correlations between SPVS and operative findings and histopathology. SPVS did not reveal the parathyroid hormone source in one case with negative non-invasive localization procedures. Comparisons between SPVS, computerized tomography (CT), and parathyroid scintigraphy (MIBI) as expressed in terms of true positive (TP), false positive (FP) and false negative (FN) were: SPVS - TP 88.8%, FP 0%, FN 11.1%; CT - TP 22.2%, FP 22.2%, FN 55.5%; and MIBI - TP 33.3%, FP 0%, FN 66.6%. At least seven of the nine operated cases have been cured; another remained normocalcaemic 2 weeks after subtotal parathyroidectomy. Conclusion: In our institution SPVS has proven to be a valuable tool in cases with recurrent or persistent primary hyperparathyroidism and negative non-invasive localization procedures.
Resumo:
This study reports on a block clinical trial of two types of central venous catheters (CVCs): antiseptic-impregnated catheters (AIC) and non-impregnated catheters (non-AIC), on catheter tip colonization and bacteraemia. In total, 500 catheters were inserted in 390 patients over the 18 month study period, 260 (52.0%) AIC and 240 (48.0%) non-AIC. Of these, 460 (92.0%) tips (237 AIC and 223 non-AIC) were collected. While significantly fewer AIC, 14 (5.9%), than non-AIC, 30 (13.5%), catheters were colonized (P < 0.01), there was no difference in the rates of bacteraemias in the two groups (0.8% vs. 2.7%, respectively, P = 0.16). There were 6.87 (95% CI 3.38-14.26) and 16.92 (95% CI 10.61-27.12) colonized AIC and non-AIC catheters, respectively, per 1000 catheter days, a difference that was significant (P < 0.01). However, no difference emerged between bacteraemias in AIC and non-AIC catheters per 1000 catheter days measured at 0.98 (95% CI 0.24-5.54) and 3.38 (95% CI 1.29-9.34), respectively (P = 0.10). Of the 444 CVCs that were sited in the subclavian or jugular veins and had tips collected, significantly more catheters were colonized in the jugular group, 19 (20%), compared with the subclavian group, 24 (6.9%; P less than or equal to 0.01). Overall, the low rates of colonization and bacteraemia may be explained by the population studied, the policies used and the employment of a clinical nurse dedicated to CVC management. (C) 2003 The Hospital Infection Society. Published by Elsevier Science Ltd. All rights reserved.