21 resultados para unstable ring resonator
Resumo:
We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.
Resumo:
Tetrazolo[1,5-a]pyrazine/2-azidopyrazine 9T/9A undergo photolysis in Ar matrix at cryogenic temperatures to yield 1,3,5-triazacyclohepta-1,2,4,6-tetraene 21 as the first observable intermediate, and 1-cyanoimidazole 11 and (2-isocyanovinyl)carbodiimide 22 as the final products. The latter tautomerizes to 2-(isocyanovinyl)cyanamide 23 on warming to 40 K. The same intermediate 21 and the same final products are obtained on matrix photolysis of the isomeric tetrazolo[1,5-c]pyrimidine/4-azidopyrimidine 24T/24A. These photolysis results as well as those of the previously reported thermal ring contraction of N-15-labeled 2-pyrazinyl- and 4-pyrimidylnitrenes to 1-cyanoimidazoles can all be rationalized in terms of selective ring opening of 21 or nitrine 10 to a nitrile ylide zwitterion 28 prior to formation of the final products, 11 and 22. The results are supported by high-level ab initio and DFT calculations (CASPT2-CASSCF(6,6), G3(MP2), and B3LYP/6-31+G*) of the energies and IR spectra of the intermediates and products.
Resumo:
[GRAPHICS] A new general method for the construction of medium ring ethers has been developed. This involves the ring expansion of halo-O,S-acetals followed by a Ramburg-Backlund ring contraction reaction with concomitant extrusion of the sulfur atom. This methodology has been utilized for the synthesis of cis- and trans-lauthisan.
Resumo:
Photolysis of 3-pyridyldiazomethane in an Ar matrix at 7-10 K gives 3-pyridylcarbene. Further photolysis causes ring opening to nitrile ylide 26 (formonitrile pent-2-en-4-ynylide) as the major reaction together with a minor amount of ring expansion to 1-azacyclohepta-1,3,4,6-tetraene, 27. Matrix photolysis of 3-azidopyridine leads to ring opening to formonitrile N-cyanovinylmethylide, 33.
Resumo:
Argon matrix photolysis of tetrazolo[1,5-a]quinoline 8 and tetrazolo[5,1-a]isoquinoline 7 causes nitrogen elimination and ring expansion to 1,3-diazabenzo[d]cyclohepta-1,2,4,6-tetraene 13. The photolysis of tetrazolo[5,1-a]isoquinoline 7 also causes ring opening to o-cyanophenylketenimine 22. Mechanisms of ring opening of heteroarylnitrenes are discussed.