118 resultados para synaptic potential
Resumo:
The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.
Resumo:
Considerable research has indicated that children and their parents often demonstrate marked discrepancies in their reporting of anxiety-related phenomena. In such cases, the question arises as to whether children are capable of accurately reporting on their anxiety. In the present study, 50 children (aged 5 to 14 years) were asked to approach a large, German Shepherd dog. Prior to the task, both the mother and child independently predicted the closest point likely to be reached by the child and the degree of anxiety likely to be experienced. These predictions were then compared with the actual phenomena displayed by the child during the task. On the behavioural measure (closest step reached), both the child and mother demonstrated equivalent predictive accuracy. On the subjective measure (fear ratings) children were considerably more accurate than their mothers. The data were not influenced by gender, age, or clinical status. The results indicate the ability of children to accurately predict their anxious responses, and support the value of incorporating children's self-reports in the assessment of emotional disorders.
Resumo:
SETTING: Hlabisa, South Africa. OBJECTIVE: To determine precedent and potential for traditional healers to act as tuberculosis (TB) treatment supervisors. METHODS: Literature review to describe precedent for the involvement of traditional healers in TB treatment supervision. Interviews with 100 TB patients to determine use of healers and their acceptability as supervisors. Interviews with 24 healers in the project sub-district to determine willingness to act as supervisors. RESULTS: Despite extensive literature on the interaction between traditional healers and conventional health services, including descriptions of traditional understandings of TB, no published work was identified that reported supervision of TB patients by traditional healers. Of 100 patients interviewed, only 10% had used a healer as the first health provider for their illness, but 40% had attended a healer at some time prior to diagnosis. Although only 4% believe healers can cure TB, 84% would consider choosing a healer as a treatment supervisor. Of the 24 healers, 15 (63%) distinguished between two types of diagnosis made among patients with. symptoms suggestive of TB: TB and idliso. Idliso is poisoning or bewitching, and is said to be best cured by healers, while TB is infectious and cannot be cured by healers. Most healers (88%) reported having referred patients with possible TB to hospital in the past; all were keen to negotiate collaboration with health services, and 92% were willing to act as treatment supervisors. CONCLUSIONS: While there is little reported precedent for traditional healers to interact formally with tuberculosis treatment services, the potential for collaboration seems to be high, at least in our setting.
Resumo:
Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.
Resumo:
omega -Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega -conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega -conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA-D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, omega -conotoxins CVID and MVIIA had similar potencies to inhibit current through central (alpha (1B-d)) and peripheral (alpha (1B-b)) splice variants of the rat N-type calcium channels when coexpressed with rat beta (3) in Xenopus oocytes, However, the potency of CVID and MVIIA increased when alpha (1B-d) and alpha (1B-b) were expressed in the absence of rat beta (3), an effect most pronounced for CVID at alpha (1B-d) (up to 540-fold) and least pronounced for MVIIA at alpha (1B-d) (3-fold). The novel selectivity of CVID may have therapeutic implications. H-1 NMR studies reveal that CMD possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
Resumo:
Objectives-To investigate the feasibility of selective screening for abdominal aortic aneurysm (AAA) based on identification of a target group of manageable size defined by risk factors for AAA. Setting-Male residents of Perth, Western Australia, aged 65-83 years, who participated in a randomised controlled trial of ultrasound screening for AAA. Methods-Eligible men were identified from the electoral roll and invited to attend a screening clinic. Those who attended completed a questionnaire, had a limited physical examination, and underwent an ultrasound examination to identify the maximum diameter of the infrarenal aorta. Data on risk factors collected from the first 8995 men seen were used to calculate a multivariate risk score for the remaining 2755 men who were screened. Gentiles of the risk score were used to define potential target groups for screening and the sensitivity and specificity of each of these selective screening strategies were calculated. We repeated the calculation separately for AAAs of at least 30 mm, 40 mm, and 50 mm in diameter. Results-We found that screening half of the male population aged 65-83 years would find approximately 75% of AAAs, regardless of their size, whereas screening only current smokers in this population would find approximately 20% of AAAs. Conclusions-Selective screening for AAA using easily recognisable risk factors is feasible but is not worthwhile as approximately 25% of clinically significant cases would be missed.
Resumo:
Arbuscular mycorrhizae are symbiotic associations among glomalean fungi and plant roots that often lead to enhanced water and nutrient uptake and plant growth. We describe experiments to test whether inoculum potential of arbuscular mycorrhizal (AM) fungal communities varies spatially within a broadleaf temperate forest, and also whether there is variability in the effectiveness of AM fungal communities in enhancing seedling growth. Inoculum potential of arbuscular mycorrhizal fungi in a temperate broad-leaved forest did not vary significantly among sites. Inoculum potential, measured as the extent to which the roots of red maple seedlings that had been germinated on sterile sand and then transplanted into the forest, were colonized by AM fungi, was similar in floodplain and higher elevation sites. It was as similar under ectomycorrhizal oaks as it was under red maples and other AM tree species. It was also similar among sites with deciduous understory shrubs with arbuscular mycorrhizae (spicebush, Lindera benzoin) and those with evergreen vegetation with ericoid mycorrhizae (mountain laurel, Kalmia latifolia). Where spicebush was the dominant understory shrub, inoculum potential was greater under gaps in the canopy than within the understory. Survivorship of transplanted red maple seedlings varied significantly over sites but was not strongly correlated with measures of inoculum potential. In a greenhouse growth experiment, arbuscular mycorrhizal fungal communities obtained from tree roots from the forest had different effects on plant growth. Seedlings inoculated with roots of red maple had twice the leaf area after 10 wk of growth compared to the AM community obtained from roots of southern red oaks. Thus, although there appears to be little heterogeneity in inoculum potential in the forest, there are differences in the effectiveness of different inocula. These effects have the potential to affect tree species diversity in forests by modifying patterns of seedling recruitment.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
The thalassinidean shrimp Trypea australiensis (the yabby) commonly occurs on intertidal sandflats and subtidal regions of sheltered embayments and estuaries along the east coast of Australia and is harvested commercially and recreationally for use as bait by anglers. The potential for counts of burrow openings to provide a reliable indirect estimate of the abundance of yabbies was examined on intertidal sandflats on North Stradbroke Island (Queensland, Australia). The relationship between the number of burrow openings and the abundance of yabbies was generally poor and also varied significantly through time, casting doubt on previous estimates of abundance for this species based on unvalidated hole counts. Spatial and temporal variation in population density, the size at maturity and the reproductive period of the yabby were also assessed. Except for an initial peak in abundance as a result of recruitment, the density of yabbies was constant throughout the study but considerably less than that estimated from a previous study in the same area. Ovigerous females were recorded at 3 mm carapace length (CL) which is smaller than previously recorded for this species and thalassinideans in general. Small ovigerous females were found throughout the study, including the summer months, which is unusual for thalassinideans in the intertidal zone. It was hypothesised that in the intertidal zone, small female yabbies may be able to balance the metabolic demands of reproduction and respiration at higher temperatures than can larger females allowing them to reproduce in the warmer months.
Resumo:
The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits.
Resumo:
For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.
Resumo:
NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors are thought to be multimers that contain either NR1/NR2A or NR1/NR2A/NR2B subunits, whereas receptors that contain only NR1/NR2B subunits are extrasynaptic. Here, we have studied the properties of NMDA receptors at glutamatergic synapses in the lateral and central amygdala. We find that NMDA receptor-mediated synaptic currents in the central amygdala in both immature and mature synapses have slow kinetics and are substantially blocked by the NR2B-selective antagonists (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propano and ifenprodil, indicating that there is no developmental change in subunit composition. In contrast, at synapses on pyramidal neurons in the lateral amygdala, whereas NMDA EPSCs at immature synapses are slow and blocked by NR2B-selective antagonists, at mature synapses their kinetics are faster and markedly less sensitive to NR2B-selective antagonists, consistent with a change from NR2B to NR2A subunits. Using real-time PCR and Western blotting, we show that in adults the ratio of levels of NR2B to NR2A subunits is greater in the central amygdala than in the lateral amygdala. These results show that the subunit composition synaptic NMDA receptors in the lateral and central amygdala undergo distinct developmental changes.
Resumo:
The spastic (spa) and oscillator (ot) mouse have naturally occurring mutations in the inhibitory glycine receptor (GlyR) and exhibit severe motor disturbances when exposed to unexpected sensory stimuli. We examined the effects of the spa and ot mutations on GlyR- and GABA(A)R-mediated synaptic transmission in the superficial dorsal horn (SFDH), a spinal cord region where inhibition is important for nociceptive processing. Spontaneous mIPSCs were recorded from visually identified neurones in parasagittal spinal cord slices. Neurones received exclusively GABA(A)R-mediated mIPSCs, exclusively GlyR-mediated mIPSCs or both types of mIPSCs. In control mice (wild-type and spa/+) over 40 % of neurones received both types of mIPSCs, over 30 % received solely GABA(A)R-mediated mIPSCs and the remainder received solely GlyR-mediated mIPSCs. In spa/spa animals, 97 % of the neurones received exclusively GABA(A)ergic or both types of mIPSCs. In ot/ot animals, over 80 % of the neurones received exclusively GABA(A)R-mediated mIPSCs. GlyR-mediated mIPSC amplitude and charge were reduced in spa/spa and ot/ot animals. GABA,Rmediated mIPSC amplitude and charge were elevated in spa/spa but unaltered in ot/ot animals. GlyR- and GABA(A)R-mediated mIPSC decay times were similar for all genotypes, consistent with the mutations altering receptor numbers but not kinetics. These findings suggest the spastic and oscillator mutations, traditionally considered motor disturbances, also disrupt inhibition in a sensory region associated with nociceptive transmission. Furthermore, the spastic mutation results in a compensatory increase in GABA(A)ergic transmission in SFDH neurones, a form of inhibitory synaptic plasticity absent in the oscillator mouse.
Resumo:
Understanding the triggers for some cyanobacteria of the Nostocales and Stigonematales orders to produce specialised reproductive cells termed akinetes, is very important to gain further insights into their ecology. By improving our understanding of their life cycle, appropriate management options may be devised to control the formation of these cells, and therefore the potential bloom inoculum which they are thought to provide, may be reduced. This study investigated the effect of chemical (phosphorus limitation), and environmental variables (temperature shock) on akinete differentiation in the freshwater cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). From the preliminary results, it is suggested that the availability of phosphorus and changes in temperature were a necessary requirement for the formation of akinetes in this particular strain of C. raciborskii. In the four phosphorus treatments investigated (0, 3, 38 and 75 mug l(-1) P), only the two higher treatments produced akinetes (approximately 220 ml(-1)). When the first akinetes were observed in the 38 and 75 mug l(-1) P treatments, filterable reactive phosphorus (FRP) concentrations in the medium were approximately 22 and 52 mug l(-1) P, respectively, indicating that there was no phosphorus limitation. In the temperature shock experiment, akinetes were observed in the 15 and 20degreesC treatments. However, akinetes were degraded (pale yellow colour, limited swelling and shrivelled edges) and in much lower concentrations, which was thought to be a result of the daily temperature shock. We suggest that the formation of akinetes in C. raciborskii (AWT 205/1) can be triggered by an initial temperature shock and that phosphorus is a necessary requirement to allow further growth and full development of akinetes.