19 resultados para strontium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent increasing applications for cast Al-Si alloys are particularly driven by the need for lightweighting components in the automotive sector. To improve mechanical properties, elements such as strontium, sodium and antimony can be added to modify the eutectic silicon from coarse and plate-like to fine and fibrous morphology. It is only recently being noticed that the morphological transformation resulting from eutectic modification is also accompanied by other, equally significant, but often unexpected changes. These changes can include a 10-fold increase in the eutectic grain size, redistribution of low-melting point phases and porosity as well as surface finish, consequently leading to variations in casting quality. This paper shows the state-of-the-art in understanding the mechanism of eutectic nucleation and growth in Al-Si alloys, inspecting samples, both quenched and uninterrupted, on the macro, micro and nano-scale. It shows that significant variations in eutectic nucleation and growth dynamics occur in AI-Si alloys as a function of the type and amount of modifier elements added. The key role of AIP particles in nucleating silicon is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional solidification of unmodified and strontium modified binary, high-purity aluminium-7 wt% silicon and commercial A356 alloys has been carried out to investigate the mechanism of eutectic solidification. The microstructure of the eutectic growth inter-face was investigated with optical microscopy and Electron Backscattering Diffraction (EBSD). In the commercial alloys, the eutectic solidification inter-face extends in the growth direction and creates a eutectic mushy zone. A planar eutectic growth front is observed in the high-purity alloys. The eutectic aluminium has mainly the same crystallographic orientation as the dendrites in the unmodified alloys and the strontium modified high-purity alloy. A more complex eutectic grain structure is found in the strontium modified commercial alloy. A mechanism involving constitutional undercooling and a columnar to equiaxed transition explains the differences between pure and commercial alloys. It is probably caused by the segregation of iron and magnesium and the activation of nucleants in the commercial alloy. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.