25 resultados para statistical quantum field theory
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
Within the ballistic transport picture, we have investigated the spin-polarized transport properties of a ferromagnetic metal/two-dimensional semiconductor (FM/SM) hybrid junction and an FM/FM/SM structure using quantum tunnelling theory. Our calculations indicate explicitly that the low spin injection efficiency (SIE) from an FM into an SM, compared with a ferromagnet/normal metal junction, originates from the mismatch of electron densities in the FM and SM. To enhance the SIE from an FM into an SM, we introduce another FM film between them to form FM/FM/SM double tunnel junctions, in which the quantum interference effect will lead to the current polarization exhibiting periodically oscillating behaviour, with a variation according to the thickness of the middle FM film and/or its exchange energy strength. Our results show that, for some suitable values of these parameters, the SIE can reach a very high level, which can also be affected by the electron density in the SM electrode.
Resumo:
We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al (2002 J. Phys. B: At. Mol. Opt. Phys. 35 1555). This derivation does not rely on the concept of local energy and momentum conservation and is based on a quasiclassical Wigner function representation of a 'high temperature' master equation for a Bose gas, which includes only modes below an energy cut-off ER that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provides noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation and by the feasibility of its numerical implementation.
Resumo:
In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.
Resumo:
The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.