24 resultados para statistical methods
Resumo:
A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E).(coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STh, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.
Resumo:
Purpose: This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods: A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve, Results: None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions: These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.
Resumo:
An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.
Resumo:
Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a statecontingent framework produces significantly different estimates of elasticities, firm technical efficiencies and other quantities of economic interest.
Resumo:
The importance of availability of comparable real income aggregates and their components to applied economic research is highlighted by the popularity of the Penn World Tables. Any methodology designed to achieve such a task requires the combination of data from several sources. The first is purchasing power parities (PPP) data available from the International Comparisons Project roughly every five years since the 1970s. The second is national level data on a range of variables that explain the behaviour of the ratio of PPP to market exchange rates. The final source of data is the national accounts publications of different countries which include estimates of gross domestic product and various price deflators. In this paper we present a method to construct a consistent panel of comparable real incomes by specifying the problem in state-space form. We present our completed work as well as briefly indicate our work in progress.
Resumo:
In this paper, a novel approach is developed to evaluate the overall performance of a local area network as well as to monitor some possible intrusion detections. The data is obtained via system utility 'ping' and huge data is analyzed via statistical methods. Finally, an overall performance index is defined and simulation experiments in three months proved the effectiveness of the proposed performance index. A software package is developed based on these ideas.