27 resultados para species richness estimators
Resumo:
The habit of inducing plant galls has evolved multiple times among insects but most species diversity occurs in only a few groups, such as gall midges and gall wasps. This phylogenetic clustering may reflect adaptive radiations in insect groups in which the trait has evolved. Alternatively, multiple independent origins of galling may suggest a selective advantage to the habit. We use DNA sequence data to examine the origins of galling among the most speciose group of gall-inducing scale insects, the eriococcids. We determine that the galling habit has evolved multiple times, including four times in Australian taxa, suggesting that there has been a selective advantage to galling in Australia. Additionally, although most gall-inducing eriococcid species occur on Myrtaceae, we found that lineages feeding on Myrtaceae are no more likely to have evolved the galling habit than those feeding on other plant groups. However, most gall-inducing species-richness is clustered in only two clades (Apiomorpha and Lachnodius + Opisthoscelis), all of which occur exclusively on Eucalyptus s.s. The Eriococcidae and the large genus Eriococcus were determined to be non-monophyletic and each will require revision. (C) 2004 The Linnean Society of London.
Resumo:
Phylogenetic trees can provide a stable basis for a higher-level classification of organisms that reflects evolutionary relationships. However, some lineages have a complex evolutionary history that involves explosive radiation or hybridisation. Such histories have become increasingly apparent with the use of DNA sequence data for phylogeny estimation and explain, in part, past difficulties in producing stable morphology-based classifications for some groups. We illustrate this situation by using the example of tribe Mirbelieae (Fabaceae), whose generic classification has been fraught for decades. In particular, we discuss a recent proposal to combine 19 of the 25 Mirbelieae genera into a single genus, Pultenaea sens. lat., and how we might find stable and consistent ways to squeeze something as complex as life into little boxes for our own convenience. © CSIRO.
Resumo:
Prioritizing areas for conservation requires the use of surrogates for assessing overall patterns of biodiversity. Effective surrogates will reflect general biogeographical patterns and the evolutionary processes that have given rise to these and their efficiency is likely to lie influenced by several factors, including the spatial scale of species turnover and the overall congruence of the biogeographical history. We examine patterns of surrogacy for insects, snails, one family of plants and vertebrates from rainforests of northeast Queensland, an area characterized by high endemicity and an underlying history of climate-induced vicariance. Nearly all taxa provided some level of prediction of the conservation values For others. However, despite an overall correlation of the patterns of species richness and complementarity, the efficiency of surrogacy was highly asymmetric.. snails and insects were strong predictors of conservation priorities for vertebrates, but not vice versa. These results confirm predictions that taxon surrogates can be effective in highly diverse tropical systems where there is a strong history of vicariant biogeography, but also indicate that correlated patterns for species richness and/or complementarity do not guarantee that one taxon will be efficient as a surrogate for another. In our case, the highly diverse and narrowly distributed invertebrates were more efficient as predictors than the less diverse and more broadly distributed vertebrates.
Resumo:
Axe latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium-sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.
Resumo:
We tested the hypothesis that tree species in a subtropical rain forest in south-east Queensland are ecologically equivalent and therefore have identical environmental requirements for their regeneration. We assessed the evidence that juveniles of species differed in their distributions in treefall gap microsites and along gradients of light availability, soil pH, soil PO4-P availability and soil NO3-N availability. Pairwise comparisons were made on a subset of the common species selected on the basis that they showed a relatively high level of positive association, and would therefore, a priori, be expected to have similar regeneration requirements. Detailed comparisons between the species failed to demonstrate evidence for species differentiation with respect to their tolerance of the disturbance associated with gap microsites or to the gradient of NO3-N availability. However, species differed markedly in their distributions along the soil pH gradient and along the gradients of light availability and soil PO4-P availability. The overall level of ecological differentiation between the species is high: seven out of the 10 possible species pairings showed evidence for ecological differentiation. Such niche differentiation amongst the juveniles of tree species may play an important role in maintaining the species richness of rain-forest communities.
Resumo:
The habitat requirements of arboreal marsupials were investigated in the dry sclerophyll forests of southeast Queensland, Australia. Species richness and abundance of arboreal marsupials was correlated to the proportion of total stand basal area occupied by lemon-scented gum (Corymbia citriodora), the height of the tallest trees, and density of hollow-bearing trees. The first two factors suggested that the most productive forests were also the most suitable habitats for arboreal marsupials. Importantly, the number of hollow-bearing trees was a significant factor in determining species richness and abundance of arboreal marsupials in this study, with the maximum number of species reached at sites containing greater than or equal to4 hollow-bearing trees/ha, and maximum abundance occurring at sites with :6 hollow-bearingtrees/ha. The proportion of C. citriodora was significant for the presence of the common brushtail possum (Trichosurus vulpecula), greater glider (Petauroides volans), and the yellow-bellied glider (Petaurus australis), while understory Acacia sp. density was important for the presence of the sugar glider (Petaurus breviceps). The yellow-bellied glider was also affected by two other variables: the density of hollow-bearing trees >50 cm diameter at breast height (dbh), and the time since the last logging. Current Codes of Practice regulating the density of hollow-bearing trees and silvicultural practices in state-owned timber production forests appear to provide adequate protection for arboreal marsupials, but the recently introduced increase in timber extraction rates within state forests may be detrimental to the animals. Also, protective prescriptions do not apply to the privately owned and leasehold estates, which contain the majority of the dry sclerophyll forests in southeast Queensland.
Resumo:
Groupers (Epinephelinae) are prominent marine fishes distributed in the warmer waters of the world. Review of the literature suggests that trematodes are known from only 62 of the 159 species and only 9 of 15 genera; nearly 90% of host-parasite combinations have been reported only once or twice. All 20 families and all but 7 of 76 genera of trematodes found in epinephelines also occur in non-epihephelines. Only 12 genera of trematodes are reported from both the Atlantic-Eastern Pacific and the Indo-West Pacific. Few (perhaps no) species are credibly cosmopolitan but some have wide distributions across the Indo-West Pacific. The hierarchical 'relatedness' of epinephelines as suggested by how they share trematode taxa (families, genera, species) shows little congruence with what is known of their phylogeny. The major determinant of relatedness appears to be geographical proximity. Together these attributes suggest that host-parasite coevolution has contributed little to the evolution of trematode communities of epinephelines. Instead, they appear to have arisen through localized episodes of host-switching, presumably both into and out of the epinephelines. The Epinephelinae may well be typical of most groups of marine fishes both in the extent to which their trematode parasites are known and in that, apparently, co-evolution has contributed little to the evolution of their communities of trematodes.
Resumo:
If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea. and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species, no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation Lime. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The composition of an open-forest lizard assemblage in eastern Australia was examined before and after a low-intensity controlled fire and concurrently compared with that in an adjoining unburnt area. The effect of fire on the available structural environment and the habitat used by two focal species, Carlia vivax and Lygisaurus foliorum, was also examined. Lizard species richness was unaffected by the controlled burn as was the abundance of most species. C. vivax was the only species to display a significant reduction in abundance after fire. While the low-intensity fire resulted in significant changes to the available structural environment, there were no compensatory shifts in the habitat preferences of either C. vivax or L. foliorum. The reduction in abundance of C. vivax was congruent with this species' avoidance of burnt areas. C. vivax displayed a non-random preference for ground cover and litter cover, which were reduced in burnt areas. Changes in the availability of preferred structural habitat features are likely to contribute to changes in the abundance of some lizard species. Therefore, even low-intensity disturbances can have an impact on lizard assemblages if critical habitat features are lost or become limiting.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
The ability to recall the location of a predator and later avoid it was tested in nine populations of rainbowfish (Melanotaenia spp.), representing three species from a variety of environments. Following the introduction of a model predator into a particular microhabitat, the model was removed, the arena rotated and the distribution of the fish recorded again. In this manner it could be determined what cues the fish relied on in order to recall the previous location of the predator model. Fish from all populations but one (Dirran Creek) were capable of avoiding the predator by remembering either the location and/or the microhabitat in which the predator was recently observed. Reliance on different types of visual cues appears to vary between populations but the reason for this variation remains elusive. Of the ecological variables tested (flow variability, predator density and habitat complexity), only the level of predation appeared to be correlated with the orientation technique employed by each population. There was no effect of species identity, which suggests that the habitat that each population occupies plays a strong role in the development of both predator avoidance responses and the cues used to track predators in the wild.
Resumo:
Trichostome ciliates are associated with many different lineages of herbivorous mammals but there are few comparative studies of these associations in each lineage of herbivores. Here the occurrence of the ciliate fauna in a range of herbivorous marsupials (diprotodonts) is investigated and compared with that of ruminants. A total of 371 potential host animals, representing 33 species and 7 families, were examined for the presence of ciliates. The prevalence of endocommensal ciliates within individual host species varied between 0 and 100%. Of the different dietary groups of marsupials examined, only foregut (macropodids) and hindgut (vombatids) fermentative herbivores were found to harbour ciliates; carnivorous (dasyurids), omnivorous (peramelids) and midgut fermenting herbivores (phalangeroids) all lacked ciliates. The majority of ciliate species were oioxenic, several occurred in closely related hosts and some were able to colonise unnatural hosts in captive populations. Ciliate prevalences were found to vary at all levels: between hosts of different species, between conspecific hosts collected at different localities or seasons and between conspecific hosts at one collecting locality. The faunal composition of the 2 marsupial families which harboured ciliates differed greatly: the vombatid fauna was composed exclusively of amylovoracids whereas the macropodids harboured amylovoracids, polycostids and macropodiniids. In comparison to the ciliate fauna of ruminants, the fauna of macropodids is both depauperate and much more host specific. Low species richness in each host may be due to the large numbers of stomach nematodes in macropodids which compete with and may prey upon the ciliates within the stomach. The high levels of host specificity are probably due to different patterns of ciliate transmission in macropodids as they do not ruminate, eructate or feed indiscriminantly on pasture contaminated with saliva containing ciliates.