57 resultados para single-photon emission computed tomography
Resumo:
Background Patients with known or suspected coronary disease are often investigated to facilitate risk assessment. We sought to examine the cost-effectiveness of strategies based on exercise echocardiography and exercise electrocardiography. Methods and results We studied 7656 patients undergoing exercise testing; of whom half underwent exercise echocardiography. Risk was defined with the Duke treadmill score for those undergoing exercise electrocardiography alone, and by the extent of ischaemia by exercise echocardiography. Cox proportional hazards models, risk adjusted for pretest likelihood of coronary artery disease, were used to estimate time to cardiac death or myocardial infarction. Costs (including diagnostic and revascularisation procedures, hospitalisations, and events) were calculated, inflation-corrected to year 2000 using Medicare trust fund rates and discounted at a rate of 5%. A decision model was employed to assess the marginal cost effectiveness (cost/life year saved) of exercise echo compared with exercise electrocardiography. Exercise echocardiography identified more patients as low-risk (51% vs 24%, p<0.001), and fewer as intermediate- (27% vs 51%, p<0.001) and high-risk (22% vs 4%); survival was greater in low- and intermediate- risk and less in high-risk patients. Although initial procedural costs and revascularisation costs (in intermediate- high risk patients) were greater, exercise echocardiography was associated with a greater incremental life expectancy (0.2 years) and a lower use of additional diagnostic procedures when compared with exercise electrocardiography (especially in lower risk patients). Using decision analysis, exercise echocardiography (Euro 2615/life year saved) was more cost effective than exercise electrocardiography. Conclusion Exercise echocardiography may enhance cost-effectiveness for the detection and management of at risk patients with known or suspected coronary disease. (C) 2003 Published by Elsevier Science Ltd on behalf of The European Society of Cardiology.
Resumo:
Background-Although assessment of myocardial perfusion by myocardial contrast echocardiography (MCE) is feasible, its incremental benefit to stress echocardiography is not well defined. We examined whether the addition of MCE to combined dipyridamole-exercise echocardiography (DExE) provides incremental benefit for evaluation of coronary artery disease (CAD). Methods and Results-MCE was combined with DExE in 85 patients, 70 of whom were undergoing quantitative coronary angiography and 15 patients with a low probability of CAD. MCE was acquired by low-mechanical-index imaging in 3 apical views after acquisition of standard resting and poststress images. Wall motion, left ventricular opacification, and MCE components of the study were interpreted sequentially, blinded to other data. Significant (>50%) stenoses were present in 43 patients and involved 69 coronary territories. The addition of qualitative MCE improved sensitivity for the detection of CAD (91% versus 74%, P=0.02) and accurate recognition of disease extent (87% versus 65% of territories, P=0.003), with a nonsignificant reduction in specificity. Conclusions-The addition of low-mechanical-index MCE to standard imaging during DExE improves detection of CAD and enables a more accurate determination of disease extent.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
Impaired coronary flow reserve is widely reported in diabetes mellitus (DM) but its effect on myocardial contrast echocardiography (MCE) is unclear. We sought to identify whether DM influences the accuracy of qualitative and quantitative assessment of coronary artery disease (CAD) using MCE in 83 patients who underwent coronary angiography (60 men, 27 with DM; 56 +/- 11 years;). Destruction replenishment imaging was performed at rest and after combined dipyridamole-exercise stress testing. Ischemia was identified by the development of new wall motion abnormalities, qualitative MCE (new perfusion defects apparent 1 second after flash during hyperemia), and quantitative MCE (myocardial blood flow reserve < 2.0 in the anterior circulation). Qualitative and quantitative assessment of perfusion was feasible in 100% and 92% of patients, respectively. Significant left anterior descending coronary stenosis (> 50% by quantitative angiography) was present in 28 patients (including 8 with DM); 55 patients had no CAD (including 19 with DM). The myocardial blood flow reserve was reduced in patients with coronary stenosis compared with those with no CAD (1.6 +/- 1.1 vs 3.8 +/- 2.5, p < 0.001). Among patients with no CAD, those with DM had an impaired flow reserve compared with control patients without DM (2.4 +/- 1.0 vs 4.5 +/- 2.8, p = 0.003). In conclusion, DM significantly influenced the quantitative, but not the qualitative, assessment of MCE, with a marked reduction in specificity in patients with DM. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background: Qualitative interpretation of myocardial contrast echocardiography (MCE) improves the accuracy of wall-motion analysis for assessment of coronary artery disease (CAD). We examined the feasibility and accuracy of quantitative MCE for diagnosis of CAD. Methods: Dipyridamole/exercise stress MCE (destruction-replenishment protocol with real-time imaging) was performed in 90 patients undergoing quantitative coronary angiography, 48 of whom had significant (> 50%) stenoses. MCE was repeated with exercise alone in 18 patients. Myocardial blood flow (A*beta) was obtained from blood volume (A) and time to refill (beta). Results: Quantification of flow reserve was feasible in 88%. The mean A*beta reserve in the anterior wall was significantly impaired for patients with left anterior descending coronary artery disease (n = 28) compared with those with no disease (1.6 +/- 1.2 vs; 4.0 +/- 2.5, P <=.001). This reflected impaired beta reserve, with no difference in the A reserve. Applying a receiver operating characteristic curve derived cutoff of 2.0 for A*beta reserve, quantitative MCE was 76% sensitive and 71% specific for the diagnosis of significant left anterior descending coronary artery stenosis. Posterior circulation results were similar, with 78% sensitivity and 59% specificity for detection of posterior CAD. Overall, quantitative MCE was similarly sensitive to qualitative approach for diagnosis of CAD (88% vs 93%), but with lower specificity (52% vs 65%, P =.07). In 18 patients restudied with pure exercise stress, the mean myocardial blood flow reserve was less than after combined stress (2.1 +/- 1.6 vs 3.7 +/- 1.9, P =.01). Conclusion: Quantitative MCE is feasible for the diagnosis of CAD with dipyridamole/exercise stress. Dipyridamole prolongs postexercise hyperemia, augmenting the degree of hyperemia at the time of imaging.
Resumo:
Aims Technological advances in cardiac imaging have led to dramatic increases in test utilization and consumption of a growing proportion of cardiovascular healthcare costs. The opportunity costs of strategies favouring exercise echocardiography or SPECT imaging have been incompletely evaluated. Methods and results We examined prognosis and cost-effectiveness of exercise echocardiography (n=4884) vs. SPECT (n=4637) imaging in stable, intermediate risk, chest pain patients. Ischaemia extent was defined as the number of vascular territories with echocardiographic wall motion or SPECT perfusion abnormalities. Cox proportional hazard models were employed to assess time to cardiac death or myocardial infarction (MI). Total cardiovascular costs were summed (discounted and inflation-corrected) throughout follow-up. A cost-effectiveness ratio = 2% annual event risk), SPECT ischaemia was associated with earlier and greater utilization of coronary revascularization (P < 0.0001) resulting in an incremental cost-effectiveness ratio of $32 381/LYS. Conclusion Health care policies aimed at allocating limited resources can be effectively guided by applying clinical and economic outcomes evidence. A strategy aimed at cost-effective testing would support using echocardiography in low-risk patients with suspected coronary disease, whereas those higher risk patients benefit from referral to SPECT imaging.
Resumo:
Off-resonance RF pre-saturation was used to obtain contrast in MRI images of polymer gel dosimeters irradiated to doses up to 50 Gy. Two different polymer gel dosimeters composed of 2-hydroxyethyl-acryl ate or methacrylic acid monomers mixed with N, N'-methylene-bisacrylamide (BIS), dispersed in an aqueous gelatin matrix were evaluated. Radiation-induced polymerization of the co-monomers generates a fast-relaxing insoluble polymer. Saturation of the polymer using off-resonance Gaussian RF pulses prior to a spin-echo read-out with a short echo time leads to contrast that is dependent on the absorbed dose. This contrast is attributed to magnetization transfer (MT) between free water and the polymer, and direct saturation of water was found to be negligible under the prevailing experimental conditions. The usefulness of MT imaging was assessed by computing the dose resolution obtained with this technique. We found a low value of dose resolution over a wide range of doses could be obtained with a single experiment. This is an advantage over multiple spin echo (MSE) experiments using a single echo spacing where an optimal dose resolution is achieved over only very limited ranges of doses. The results suggest MT imaging protocols may be developed into a useful tool for polymer gel dosimetry.
Resumo:
We discuss techniques for producing, manipulating, and measuring qubits encoded optically as vacuum- and single-photon states. We show that a universal set of nondeterministic gates can be constructed using linear optics and photon counting. We investigate the efficacy of a test gate given realistic detector efficiencies.
Resumo:
Background and aims: Hip fracture is a devastating event in terms of outcome in the elderly, and the best predictor of hip fracture risk is hip bone density, usually measured by dual X-ray absorptiometry (DXA). However, bone density can also be ascertained from computerized tomography (CT) scans, and mid-thigh scans are frequently employed to assess the muscle and fat composition of the lower limb. Therefore, we examined if it was possible to predict hip bone density using mid-femoral bone density. Methods: Subjects were 803 ambulatory white and black women and men, aged 70-79 years, participating in the Health, Aging and Body Composition (Health ABC) Study. Bone mineral content (BMC, g) and volumetric bone mineral density (vBMD, mg/cm(3)) of the mid-femur were obtained by CT, whereas BMC and areal bone mineral density (aBMD, g/cm(2)) of the hip (femoral neck and trochanter) were derived from DXA. Results: In regression analyses stratified by race and sex, the coefficient of determination was low with mid-femoral BMC, explaining 6-27% of the variance in hip BMC, with a standard error of estimate (SEE) ranging from 16 to 22% of the mean. For mid-femur vBMD, the variance explained in hip aBMD was 2-17% with a SEE ranging from 15 to 18%. Adjusting aBMD to approximate volumetric density did not improve the relationships. In addition, the utility of fracture prediction was examined. Forty-eight subjects had one or more fractures (various sites) during a mean follow-up of 4.07 years. In logistic regression analysis, there was no association between mid-femoral vBMD and fracture (all fractures), whereas a 1 SD increase in hip BMD was associated with reduced odds for fracture of similar to60%. Conclusions: These results do not support the use of CT-derived mid-femoral vBMD or BMC to predict DXA-measured hip bone mineral status, irrespective of race or sex in older adults. Further, in contrast to femoral neck and trochanter BMD, mid-femur vBMD was not able to predict fracture (all fractures). (C) 2003, Editrice Kurtis.
Resumo:
We theoretically demonstrate a method for producing the maximally path-entangled state (1/root2)(\N,0>+exp[iNphi]\0,N>) using intensity-symmetric multiport beam splitters, single photon inputs, and either photon-counting postselection or conditional measurement. The use of postselection enables successful implementation with non-unit efficiency detectors. We also demonstrate how to make the same state more conveniently by replacing one of the single photon inputs by a coherent state.
Resumo:
It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.