26 resultados para signal detection theory
Resumo:
This paper introduces a blind multiuser detection algorithm for MIMO channels. The receiver is required to separate and recover the information signal of the desired user(s) based on independent component analysis (ICA) of the received sequence. The received sequence is assumed to be independent identically distributed. Experimental results show that the proposed blind ICA multiuser detection works well with a short symbol sequence, even if the channel time span is not accurately estimated. It is concluded that the proposed blind multiuser detection performs better than the conventional matched filters in a noisy environment.
Resumo:
This paper reviews a number of used and/or proposed ideas for optical detection of small particles including single molecules. Different techniques (direct absorption and scattering, interferometry, use of sub Poissonian statistics, cavity enhancement, and thermal lens detection) are compared in terms of signal-to-noise ratio. It is shown that scattering (resonance and non resonance) fundamentally remains the method of choice for most applications.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.
Resumo:
In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure