36 resultados para shear waves
Resumo:
Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present results from both theoretical and experimental studies of the noise characteristics of mode-locked superfluorescent lasers. The results show that observed macroscopic broadband amplitude noise on the laser pulse train has its origin in quantum noise-initiated ''phase-wave'' fluctuations, and we find an associated phase transition in the noise characteristics as a function of laser cavity detuning.
Resumo:
A traveling wave of BaSO4 in the chlorite-thiourea reaction has shown concentric precipitation patterns upon being triggered by the autocatalyst HOCl. The precipitation patterns show circular rings of alternate null and full precipitation regions. This self-organization appears to be the result of the formation of a convective torus. The formation of the convective torus can be described as a Benard-Marangoni instability with lateral heating.
Resumo:
It is shown that coherent quantum simultons (simultaneous solitary waves at two different frequencies) can undergo quadrature-phase squeezing as they propagate through a dispersive chi((2)) waveguide. This requires a treatment of the coupled quantized fields including a quantized depleted pump field. A technique involving nonlinear stochastic parabolic partial differential equations using a nondiagonal coherent state representation in combination with an exact Wigner representation on a reduced phase space is outlined. We explicitly demonstrate that group-velocity matched chi((2)) waveguides which exhibit collinear propagation can produce quadrature-phase squeezed simultons. Quasi-phase-matched KTP waveguides, even with their large group-velocity mismatch between fundamental and second harmonic at 425 nm, can produce 3 dB squeezed bright pulses at 850 nm in the large phase-mismatch regime. This can be improved to more than 6 dB by using group-velocity matched waveguides.
Resumo:
Evolution of localized folding patterns in layered elastic and visco-elastic materials is reviewed in the context of compressed geological systems. The thin strut or plate embedded in a visco-elastic medium is used as an archetypal example to describe localized buckles which, in contrast to those from earlier formulations, appear in the absence of triggering imperfections. Structural and material effects are surveyed and important nonlinear characteristics are identified. A brief review of possible methods of analysis is conducted.
Resumo:
The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.
Resumo:
Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.
Resumo:
In this paper, an attempt was made to investigate a fundamental problem related to the flexural waves excited by rectangular transducers. Due to the disadvantages of the Green's function approach for solving this problem, a direct and effective method is proposed using a multiple integral transform method and contour integration technique. The explicit frequency domain solutions obtained from this newly developed method are convenient for understanding transducer behavior and theoretical optimization and experimental calibration of rectangular transducers. The time domain solutions can then be easily obtained by using the fast Fourier transform technique. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
It is shown that the observed difference in sediment transporting efficiency by the swash uprush, compared with the downrush, could be mainly due to greater bed shear stress for a given velocity in the more abruptly accelerated uprush. The bed shear stress generated by an arbitrary free stream velocity time series is modelled in terms of usual wave boundary layer models plus a phase lead (phi(tau) of the bed shear stress compared with the free stream velocity at the peak frequency. With this approach, the total transport amounts in uprush and downrush can be modelled satisfactorily with the same sediment transport formula, without the need for different uprush and downrush coefficients. While the adaptation of sediment transport formulae from steady flow can thus lead to the right total amounts of sediment moved by this method, the timing of the instantaneous sediment transport rates are probably not accurately modelled due to the highly unsteady nature of the swash and the presence of pre-suspended sediment in the uprush. Nevertheless, the proposed method is a useful intermediate step before we have a complete understanding of sediment transport under very rapid accelerations and of the relative contribution of pre-suspended sediment to the onshore sediment transport in swash zones. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.