28 resultados para sediment retention in reservoirs
Resumo:
It is shown that the observed difference in sediment transporting efficiency by the swash uprush, compared with the downrush, could be mainly due to greater bed shear stress for a given velocity in the more abruptly accelerated uprush. The bed shear stress generated by an arbitrary free stream velocity time series is modelled in terms of usual wave boundary layer models plus a phase lead (phi(tau) of the bed shear stress compared with the free stream velocity at the peak frequency. With this approach, the total transport amounts in uprush and downrush can be modelled satisfactorily with the same sediment transport formula, without the need for different uprush and downrush coefficients. While the adaptation of sediment transport formulae from steady flow can thus lead to the right total amounts of sediment moved by this method, the timing of the instantaneous sediment transport rates are probably not accurately modelled due to the highly unsteady nature of the swash and the presence of pre-suspended sediment in the uprush. Nevertheless, the proposed method is a useful intermediate step before we have a complete understanding of sediment transport under very rapid accelerations and of the relative contribution of pre-suspended sediment to the onshore sediment transport in swash zones. (C) 2002 Published by Elsevier Science B.V.
Resumo:
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PODS and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warrented into possible anthropogenic sources in areas where natural PCDD formation has been suggested.
Resumo:
Petrogenetic models for the origin of lamproites are evaluated using new major element, trace element, and Sr, Nd, and Pb isotope data for Holocene lamproites from the Gaussberg volcano in the East Antarctic Shield. Gaussberg lamproites exhibit very unusual Pb isotope compositions (Pb-206/Pb-204 = 17.44-17.55 and Pb-207/Pb-204 = 15.56-15.63), which in common Pb isotope space plot above mantle evolution lines and to the left of the meteorite isochron. Combined with very unradiogenic Nd, such compositions are shown to be inconsistent with an origin by melting of sub-continental lithospheric mantle. Instead, a model is proposed in which late Archaean continent-derived sediment is subducted as K-hollandite and other ultra-high-pressure phases and sequestered in the Transition Zone (or lower mantle) where it is effectively isolated for 2-3 Gyr. The high Pb-207/Pb-204 ratio is thus inherited from ancient continent-derived sediment, and the relatively low Pb-206/Pb-204 ratio is the result of a single stage of U/Pb fractionation by subduction-related U loss during slab dehydration. Sr and Nd isotope ratios, and trace element characteristics (e.g. Nb/Ta ratios) are consistent with sediment subduction and dehydration-related fractionation. Similar models that use variable time of isolation of subducted sediment can be derived for all lamproites. Our interpretation of lamproite sources has important implications for ocean island basalt petrogenesis as well as the preservation of geochemically anomalous reservoirs in the mantle.
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wildtype and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mm BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wildtype hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.
Resumo:
Six species of trees located in the dry sclerophyll forests of southeast Queensland were studied to ascertain which was most suitable to be retained as hollow-bearing trees for nesting and denning by arboreal marsupials. Generally for all tree species, the number of entrances to hollows was positively correlated with the diameter at breast height (DBH) and the growth stage, and entrance diameters also increased in trees with a larger DBH. However, there were differences between the species; Corymbia citriodora had few hollows until the individuals were very large while Eucalyptus crebra had low numbers of hollows throughout its entire size range. It was concluded that a mixture of tree species provided a range of hollow sizes and positions that would be suitable for nesting and denning by arboreal marsupials in those forests. There were large differences between tree species in the relationship between tree size and estimated age. Five of the tree species took between 186 and 230 years to begin to produce hollows while E. crebra took up to 324 years. This suggests that tree species other than E. crebra may be the most preferred for retention in areas where hollow-bearing tree densities are lower than the prescribed level. Other data also suggests there are likely to be enough trees in larger size classes that would begin to form hollows within the next 50 years to compensate for an expected loss of hollow-bearing stags during that same period. In terms of forest operation, the retention of six hollow-bearing trees/ha would represent an estimated loss of 7.3-15% wood production. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
Queensland, Australia, has a proud pastoral history; however, the private and social benefits of continued woodland clearing for pasture development are unlikely to be as pronounced as they had been in the past. The environmental benefits of tree retention in and regions of the State are now better appreciated and market opportunities have arisen for the unique timbers of western Queensland. A financial model is developed to facilitate a comparison of the private profitability of small-scale timber production from remnant Acacia woodlands against clearing for pasture development in the Mulga Lands and Desert Uplands bioregions of western Queensland. Four small-scale timber production scenarios, which differ in target markets and the extent of processing (value-adding), are explored within the model. Each scenario is examined for the cases where property rights to the timber are vested with the timber processor, and where royalties are payable. For both cases of resource ownership, at least one scenario generates positive returns from timber production, and exceeds the net farm income per hectare for an average grazing property in the study regions over the period 1989-1990 to 2000-2001. The net present value per hectare of selectively harvesting and processing high-value clearwood from remnant western Queensland woodlands is found to be greater than clearing for grazing. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Pesticides leaching through a soil profile will be exposed to changing environmental sorption and desorption conditions as different horizons with distinct physical and chemical properties are encountered. Soil cores were taken from a clay soil profile and samples taken from 0.0 to 0.3 m (surface), 1.0-1.3 m (mid) and 2.7-3.0 m (deep) and treated with the chloroacetanilide herbicide, acetochlor. Freundlich isotherms revealed that sorption and desorption behaviour varied with each depth sampled. As soil depth increased, the extent and strength of sorption decreased, indicating that the potential for leaching was increased in the subsoils compared with the surface soil. Hysteresis was evident at each of the three depths sampled, although no significant correlations between soil properties and the hysteresis coefficients were evident. Desorption studies using soil fractions with diameters of > 2000, 250-2000, 53-250, 20-53, 2-20, 0-2 and 0-1 mum separated from each of the three soil depths showed that differential desorption kinetics occurred and that the retention of acetochlor significantly correlated (R-2 = 0.998) with organic matter content. A greater understanding of the influence of soil components on the overall sorption and desorption potential of surface and subsurface soils is required to allow accurate prediction of acetochlor retention in the soil. In addition, it is likely that the proportion of each size fraction in a soil horizon would influence acetochlor bioavailability and movement to groundwater.
Resumo:
Measurements in the macro-tidal Daly Estuary show that the presence of an undular tidal bore contributed negligibly to the dissipation of tidal energy. No recirculation bubble was observed between a trough and the following wave crest in the lee waves following the undular bore. This differs to stationary undular bores in laboratory experiments at larger Froude numbers where a recirculation bubble exists. Secondary motions and the turbulence generated by the undular bore had no measurable influence on the sediment transport. This situation contrasts with the intense sediment resuspension observed in breaking tidal bores. The tidally averaged sediment budget in the Daly Estuary was controlled by the asymmetry of tidal currents. The undular bore may widen the river by breaking along the banks that it undercuts, leading to bank slippage. A patch of river-wide macro-turbulence of 3-min duration occurred about 20 min after the passage of the bore during accelerating tidal currents. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.
Resumo:
Background: In early 2001, Australia experienced a sudden, dramatic and;sustained decrease in heroin availability that was accompanied by sharp increases in price and decreases in street level purity-the so-called heroin shortage. These unprecedented changes occurred in a context of widespread treatment availability, which made it possible for the first time to examine the impact of a sharp reduction in heroin supply in New South Wales (NSW) on entry to and adherence with treatment for heroin dependence. Given the evidence of drug substitution by some users. the current paper also examines the effects of the shortage on entry to treatment for other forms of drug dependence. Methods: Interrupted time-series analysis of the number of persons entering opioid pharmacotherapy and other treatment modalities in NSW for heroin dependence and for the treatment for other types of drug dependence. Findings: The heroin shortage was associated with a reduction in the number of younger persons entering opioid pharmacotherapy. There was a dramatic decrease in the number of persons entering heroin withdrawal or assessment only treatment episodes. There appear to have been small improvements in adherence to and retention in heroin treatment after the reduction in heroin supply. Relatively small increases were observed in numbers being treated for cocaine dependence. Conclusions: In the context of good treatment provision, a reduction in heroin supply appeared to produce modest improvements in intermediate outcomes. Supply and demand reduction measures, when both are implemented successfully, may be complementary. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Recently, we identified a large number of ultraconserved (uc) sequences in noncoding regions of human, mouse, and rat genomes that appear to be essential for vertebrate and amniote ontogeny. Here, we used similar methods to identify ultraconserved genomic regions between the insect species Drosophila melanogaster and Drosophila pseudoobscura, as well as the more distantly related Anopheles gambiae. As with vertebrates, ultraconserved sequences in insects appear to Occur primarily in intergenic and intronic sequences, and at intron-exon junctions. The sequences are significantly associated with genes encoding developmental regulators and transcription factors, but are less frequent and are smaller in size than in vertebrates. The longest identical, nongapped orthologous match between the three genomes was found within the homothorax (hth) gene. This sequence spans an internal exon-intron junction, with the majority located within the intron, and is predicted to form a highly stable stem-loop RNA structure. Real-time quantitative PCR analysis of different hth splice isoforms and Northern blotting showed that the conserved element is associated with a high incidence of intron retention in hth pre-mRNA, suggesting that the conserved intronic element is critically important in the post-transcriptional regulation of hth expression in Diptera.